Peter K.J. Robertson
A study of the kinetic solvent isotope effect on the destruction of microcystin-LR and geosmin using TiO2 photocatalysis.
Robertson, Peter K.J.; Bahnemann, Detlef W.; Lawton, Linda A.; Bellu, Edmund
Abstract
We have previously reported the effectiveness of TiO2 photocatalysis in the destruction of species generated by cyanobacteria, specifically geosmin and microcystin-LR. In this paper we report an investigation of factors which influence the rate of the toxin destruction at the catalyst surface. A primary kinetic solvent isotope effect of approximately 1.5 was observed when the destruction was performed in a heavy water solvent. This is in contrast to previous reports of a solvent isotope effect of approximately 3, however, these studies were undertaken with a different photocatalyst material. The solvent isotope effect therefore appears to be dependent on the photocatalyst material used. The results of the study support the theory that the photocatalytic decomposition occurs on the catalyst surface rather than in the bulk of the solution. Furthermore it appears that the rate determining step is not oxygen reduction as previously reported.
Citation
ROBERTSON, P.K.J., BAHNEMANN, D.W., LAWTON, L.A. and BELLU, E. 2011. A study of the kinetic solvent isotope effect on the destruction of microcystin-LR and geosmin using TiO2 photocatalysis. Applied catalysis B: environmental [online], 108-109, pages 1-5. Available from: https://doi.org/10.1016/j.apcatb.2011.07.019
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 19, 2011 |
Online Publication Date | Jul 26, 2011 |
Publication Date | Oct 11, 2011 |
Deposit Date | Feb 19, 2021 |
Publicly Available Date | Mar 30, 2021 |
Journal | Applied Catalysis B: Environmental |
Print ISSN | 0926-3373 |
Electronic ISSN | 1873-3883 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 108-109 |
Pages | 1-5 |
DOI | https://doi.org/10.1016/j.apcatb.2011.07.019 |
Keywords | Process Chemistry and Technology; General Environmental Science; Catalysis |
Public URL | https://rgu-repository.worktribe.com/output/1147958 |
Files
ROBERTSON 2011 A study of kinetic
(203 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Aging microplastics enhances the adsorption of pharmaceuticals in freshwater.
(2023)
Journal Article
Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar.
(2023)
Journal Article
Bio-based sustainable polymers and materials: from processing to biodegradation.
(2023)
Journal Article
Characterisation of microplastics is key for reliable data interpretation.
(2023)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search