Mayowa Ayodele
RK-EDA: a novel random key based estimation of distribution algorithm.
Ayodele, Mayowa; McCall, John; Regnier-Coudert, Olivier
Authors
Contributors
Julia Handl
Editor
Emma Hart
Editor
Peter R. Lewis
Editor
Manuel L�pez-Ib��ez
Editor
Gabriela Ochoa
Editor
Ben Paechter
Editor
Abstract
The challenges of solving problems naturally represented as permutations by Estimation of Distribution Algorithms (EDAs) have been a recent focus of interest in the evolutionary computation community. One of the most common alternative representations for permutation based problems is the Random Key (RK), which enables the use of continuous approaches for this problem domain. However, the use of RK in EDAs have not produced competitive results to date and more recent research on permutation based EDAs have focused on creating superior algorithms with specially adapted representations. In this paper, we present RK-EDA; a novel RK based EDA that uses a cooling scheme to balance the exploration and exploitation of a search space by controlling the variance in its probabilistic model. Unlike the general performance of RK based EDAs, RK-EDA is actually competitive with the best EDAs on common permutation test problems: Flow Shop Scheduling, Linear Ordering, Quadratic Assignment, and Travelling Salesman Problems.
Citation
AYODELE, M., MCCALL, J. and REGNIER-COUDERT, O. 2016. RK-EDA: a novel random key based estimation of distribution algorithm. In Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G. and Paechter, B. (eds.) Parallel problem solving from natuture: proceedings of the 14th International parallel problem solving from nature conference (PPSN XIV), 17-21 September 2016, Edinburgh, UK. Lecture notes in computer science, 9921. Cham: Springer [online], pages 849-858. Available from: https://doi.org/10.1007/978-3-319-45823-6_79
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 14th International parallel problem solving from nature conference (PPSN XIV) |
Start Date | Sep 17, 2016 |
End Date | Sep 21, 2016 |
Acceptance Date | Dec 18, 2015 |
Online Publication Date | Aug 31, 2016 |
Publication Date | Sep 23, 2016 |
Deposit Date | Mar 13, 2017 |
Publicly Available Date | Mar 13, 2017 |
Print ISSN | 0302-9743 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Pages | 849-858 |
Series Title | Lecture notes in computer science |
Series Number | 9921 |
Series ISSN | 0302-9743 |
ISBN | 9783319458229 |
DOI | https://doi.org/10.1007/978-3-319-45823-6_79 |
Keywords | Estimation of distribution algorithm; Random key; Permutation problems; Cooling scheme; Univariate model |
Public URL | http://hdl.handle.net/10059/2215 |
Contract Date | Mar 13, 2017 |
Files
AYODELE 2016 RK-EDA
(665 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
Two-layer ensemble of deep learning models for medical image segmentation.
(2024)
Journal Article
DEFEG: deep ensemble with weighted feature generation.
(2023)
Journal Article
A comparative study of anomaly detection methods for gross error detection problems.
(2023)
Journal Article