Dr Ghazi Droubi m.g.droubi@rgu.ac.uk
Principal Lecturer
Flow noise identification using acoustic emission (AE) energy decomposition for sand monitoring in flow pipeline.
Droubi, Mohamad Ghazi; Reuben, R.L.; Steel, John A.
Authors
R.L. Reuben
John A. Steel
Abstract
In pipelines used for petroleum production and transportation, sand particles may be present in the multi-phase flow of oil and gas and water. The Acoustic Emission (AE) measurement technique is used in the field of sand monitoring and detection in the oil and gas industry. However, as the AE signals recorded are strongly influenced by flow conditions in the pipe, identification of sand particle related signals or events remain a significant challenge in interpretation of AE signals. Therefore, a systematic investigation of sand particle impact AE energy measurements, using a sensor mounted on the outer surface of a sharp bend in a carbon steel pipe, was carried out in the laboratory to characterise flow signals using a slurry impingement flow loop test rig. A range of silica sand particles fractions of mean particle size (212-710 um) were used in the flow with particle nominal concentration between (1 and 5 wt.%) while the free stream velocity was changed between (4.2 and 14 ms-1). A signal processing technique was developed in which the total AE energy associated with particle-free water impingement was divided into static and oscillated parts and a demodulated frequency analysis was carried out on the oscillated part to identify major spectral components and hence the sources of AE signals. A simple theoretical model for water impingement AE signals was then developed to show the dependence of AE energy components on different flow speeds. A similar decomposition of AE energy into static and oscillatory components was used to analyse AE signals for particle-laden flows. The effect of flow speed on the spectral AE energy for different sand concentrations and particle size fractions was investigated and the results show that the 100 Hz band is attributed to mechanical noise, the 42 Hz band is due to fluid turbulence and the dominant band is broad oscillated component. The AE energy decomposition method together with the water impingement model and coupled with spectral peaks filtering enable isolation of AE energy associated with particle impact from other AE sources and noise and, hence, the proposed decomposition approach can enhance the interpretation of AE data in pipeline flows.
Citation
DROUBI, M.G., REUBEN, R.L. and STEEL, J.I. 2018. Flow noise identification using acoustic emission (AE) energy decomposition for sand monitoring in flow pipeline. Applied acoustics [online], 131, pages 5-15. Available from: https://doi.org/10.1016/j.apacoust.2017.10.016
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 10, 2017 |
Online Publication Date | Oct 18, 2017 |
Publication Date | Feb 28, 2018 |
Deposit Date | Oct 20, 2017 |
Publicly Available Date | Oct 19, 2018 |
Journal | Applied acoustics |
Print ISSN | 0003-682X |
Electronic ISSN | 1872-910X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 131 |
Pages | 5-15 |
DOI | https://doi.org/10.1016/j.apacoust.2017.10.016 |
Keywords | Acoustic Emission (AE); Sand monitoring; Slurry; Flow noise |
Public URL | http://hdl.handle.net/10059/2558 |
Contract Date | Oct 20, 2017 |
Files
DROUBI 2018 Flow noise identification using acoustic
(928 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
The impact of ice formation on vertical axis wind turbine performance and aerodynamics.
(2023)
Journal Article
Data reduction strategies.
(2021)
Book Chapter
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search