C. Ibie
In-vitro evaluation of the effect of polymer structure on uptake of novel polymer-insulin polyelectrolyte complexes by human epithelial cells.
Ibie, C.; Knott, R.; Thompson, C.J.
Authors
R. Knott
C.J. Thompson
Abstract
The biocompatibility and cellular uptake of polymer, insulin polyelectrolyte complexes (PECs) prepared using polyallylamine-based polymers was evaluated in-vitro using Caco-2 cell monolayers as a predictive model for human small intestinal epithelial cells. Poly(allyl amine) (PAA) and Quaternised PAA (QPAA) were thiolated using either carbodiimide mediated conjugation to N-acetylcysteine (NAC) or reaction with 2-iminothiolane hydrochloride yielding their NAC and 4-thiobutylamidine (TBA) conjugates, respectively. The effect of polymer quaternisation and/or thiolation on the IC50 of PAA was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay carried out on Caco-2 cells (with and without a 24 h recovery period after samples were removed). Uptake of PECs by Caco-2 cells was monitored by microscopy using fluorescein isothiocyanate (FITC) labelled insulin and rhodamine-labelled polymers at polymer:insulin ratios (4:5) after 0.5, 1, 2 and 4 h incubation in growth media (±calcium) and following pre-incubation with insulin. MTT results indicated that quaternisation of PAA was associated with an improvement in IC50 values; cells treated with QPAA (0.001-4 mg mL-1) showed no signs of toxicity following a 24 h cell recovery period, while thiolation of QPAA resulted in a decrease in the IC50. Cellular uptake studies showed that within 2-4 h, QPAA and QPAA-TBA insulin PECs were taken up intracellularly, with PECs being localised within the perinuclear area of cells. Further investigation showed that uptake of PECs was unaffected when calcium-free media was used, while presaturating insulin receptors affected the uptake of QPAA, insulin PECs, but not QPAA-TBA PECs. The biocompatibility of PAA and uptake of insulin was improved by both thiol and quaternary substitution.
Citation
IBIE, C., KNOTT, R. and THOMPSON, C.J. 2015. In-vitro evaluation of the effect of polymer structure on uptake of novel polymer-insulin polyelectrolyte complexes by human epithelial cells. International journal of pharmaceutics [online], 479(1), pages 103-117. Available from: https://doi.org/10.1016/j.ijpharm.2014.12.058
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 26, 2014 |
Online Publication Date | Dec 27, 2014 |
Publication Date | Feb 1, 2015 |
Deposit Date | Dec 11, 2017 |
Publicly Available Date | Dec 11, 2017 |
Journal | International journal of pharmaceutics |
Print ISSN | 0378-5173 |
Electronic ISSN | 1873-3476 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 479 |
Issue | 1 |
Pages | 103-117 |
DOI | https://doi.org/10.1016/j.ijpharm.2014.12.058 |
Keywords | Fluorescence microscopy; Insulin; MTT assay; Polyelectrolyte complex; Thiolation; Quaternization |
Public URL | http://hdl.handle.net/10059/2628 |
Contract Date | Dec 11, 2017 |
Files
IBIE 2015 In-vitro evaluation of the effect
(1.6 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search