M. Ravikanti
Laminar flamelet model prediction of NOx formation in a turbulent bluff-body combustor.
Ravikanti, M.; Hossain, M.; Malalasekera, W.
Abstract
A bluff-body combustor, with recirculation zone and simple boundary conditions, is ideal as a compromise for an industrial combustor for validating combustion models. This combustor, however, has proved to be very challenging to the combustion modellers in a number of previous studies. In the present study, an improved prediction has been reported through better representation of turbulence effect by Reynolds stress transport model and extended upstream computational domain. Thermo-chemical properties of the flame have been represented by a laminar flamelet model. A comparison among reduced chemical kinetic mechanism of Peters and detailed mechanisms of GRI 2.11, GRI 3.0, and SanDiego has been studied under the laminar flamelet modelling framework. Computed results have been compared against the well-known experimental data of Sydney University bluff-body CH4/H2 flame. Results show that the laminar flamelet model yields very good agreement with measurements for temperature and major species with all the reaction mechanisms. The GRI 2.11 performs better than the other reaction mechanisms in predicting minor species such as OH and pollutant NO. The agreement achieved for NO is particularly encouraging considering the simplified modelling formulation utilized for the kinetically controlled NO formation.
Citation
RAVIKANTI, M., HOSSAIN, M. and MALALASEKERA, W. 2009. Laminar flamelet model prediction of NOx formation in a turbulent bluff-body combustor. Proceedings of the Institution of Mechanical Engineers, part A: journal of power and energy [online], 223(1), pages 41-54. Available from: https://doi.org/10.1243/09576509JPE569
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 25, 2008 |
Online Publication Date | Nov 25, 2008 |
Publication Date | Feb 28, 2009 |
Deposit Date | Jun 6, 2013 |
Publicly Available Date | Jun 6, 2013 |
Journal | Proceedings of the Institution of Mechanical Engineers, part A: journal of power and energy |
Print ISSN | 0957-6509 |
Electronic ISSN | 2041-2967 |
Publisher | SAGE Publications |
Peer Reviewed | Peer Reviewed |
Volume | 223 |
Issue | 1 |
Pages | 41-54 |
DOI | https://doi.org/10.1243/09576509JPE569 |
Keywords | Bluff body; Combustion; Laminar flamelet; NOx prediction |
Public URL | http://hdl.handle.net/10059/824 |
Contract Date | Jun 6, 2013 |
Files
RAVIKANTI 2009 Laminar flamelet model
(1.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Analytical model for laser cutting in porous media.
(2024)
Journal Article
Applications of artificial intelligence in geothermal resource exploration: a review.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search