Luca Giaramida
Freshwater bacterial diversity, functions and stability.
Giaramida, Luca
Authors
Contributors
Professor Linda Lawton l.lawton@rgu.ac.uk
Supervisor
Brajesh Singh
Supervisor
Professor Christine Edwards c.edwards@rgu.ac.uk
Supervisor
Abstract
Biodiversity is declining worldwide with detrimental effects on ecosystems functions and services that it sustains. The relationship between biodiversity and freshwater purification remains unclear. Freshwater purification is of paramount importance for humankind as eighty percent of the worlds population is exposed to high levels of threat in terms of water security. Bacteria are the most diverse and abundant organisms on Earth and they play, directly or indirectly, a key role in the majority of ecosystem services including water purification. The current work aimed, in freshwater systems, to unravel the relationships between microbial diversity and: (a) biodegradation of toxic compounds (i.e. specialised function); (b) respiration (i.e. broad function) and; (c) stability of broad functioning. Firstly, preliminary experiments were carried out to establish freshwater sample size to representatively evaluate bacterial communities diversity and also suitable natural and man-made toxic compounds for freshwater incubation experiments. Then, the microbial communities ability to degrade microcystin-LR was explored in the context of previous exposures and nutrient availability. Finally, we focused on the relationships between diversity and functioning. A decrease in microbial diversity caused a decrease in both broad and specialised ecosystem functions tested. Stability of broad functioning was also negatively affected by a decrease in microbial diversity. Both lakes (Scotland) and rivers (Australia) microcosms experiments resulted in comparable findings suggesting consistent relationships across different freshwater systems. These results highlight that, similarly to macro-organisms (plant and animals), declining diversity of the microbial communities has direct consequences for important ecosystem functioning and services and therefore, microbial diversity should be explicitly considered in all biodiversity conservation debates.
Citation
GIARAMIDA, L. 2013. Freshwater bacterial diversity, functions and stability. Robert Gordon University, PhD thesis.
Thesis Type | Thesis |
---|---|
Deposit Date | Jul 31, 2013 |
Publicly Available Date | Jul 31, 2013 |
Public URL | http://hdl.handle.net/10059/843 |
Contract Date | Jul 31, 2013 |
Award Date | May 31, 2013 |
Files
GIARAMIDA 2013 Freshwater bacterial diversity
(4.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© The Author.
You might also like
Aging microplastics enhances the adsorption of pharmaceuticals in freshwater.
(2023)
Journal Article
Photocatalytic conversion of cellulose into C5 oligosaccharides.
(2023)
Journal Article
Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar.
(2023)
Journal Article
Bio-based sustainable polymers and materials: from processing to biodegradation.
(2023)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search