Md Sumon Reza
Investigation of thermochemical properties and pyrolysis of barley waste as a source for renewable energy.
Reza, Md Sumon; Taweekun, Juntakan; Afroze, Shammya; Siddique, Shohel Ahmed; Islam, Md Shahinoor; Wang, Chongqing; Azad, Abul K.
Authors
Juntakan Taweekun
Shammya Afroze
Shohel Ahmed Siddique
Md Shahinoor Islam
Chongqing Wang
Abul K. Azad
Abstract
Energy consumption is rising dramatically at the price of depleting fossil fuel supplies and rising greenhouse gas emissions. To resolve this crisis, barley waste, which is hazardous for the environment and landfill, was studied through thermochemical characterization and pyrolysis to use it as a feedstock as a source of renewable energy. According to proximate analysis, the concentrations of ash, volatile matter, fixed carbon, and moisture were 5.43%, 73.41%, 18.15%, and 3.01%, consecutively. The ultimate analysis revealed that the composition included an acceptable H/C, O/C, and (N+O)/C atomic ratio, with the carbon, hydrogen, nitrogen, sulfur, and oxygen amounts being 46.04%, 6.84%, 3.895%, and 0.91%, respectively. The higher and lower heating values of 20.06 MJ/kg and 18.44 MJ/kg correspondingly demonstrate the appropriateness and promise for the generation of biofuel effectively. The results of the morphological study of biomass are promising for renewable energy sources. Using Fourier transform infrared spectroscopy, the main link between carbon, hydrogen, and oxygen was discovered, which is also important for bioenergy production. The maximum degradation rate was found by thermogravimetric analysis and derivative thermogravimetry to be 4.27% per minute for pyrolysis conditions at a temperature of 366 °C and 5.41% per minute for combustion conditions at a temperature of 298 °C. The maximum yields of biochar (38.57%), bio-oil (36.79%), and syngas (40.14%) in the pyrolysis procedure were obtained at 400, 500, and 600 °C, respectively. With the basic characterization and pyrolysis yields of the raw materials, it can be concluded that barley waste can be a valuable source of renewable energy. Further analysis of the pyrolyzed products is recommended to apply in the specific energy fields.
Citation
REZA, M.S. TAWEEKUN, J., AFROZE, S., SIDDIQUE, S.A., ISLAM, M.S., WANG, C. and AZAD, A.K. 2023. Investigation of thermochemical properties and pyrolysis of barley waste as a source for renewable energy. Sustainability [online], 15(2), article number 1643. Available from: https://doi.org/10.3390/su15021643
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 12, 2023 |
Online Publication Date | Jan 14, 2023 |
Publication Date | Jan 31, 2023 |
Deposit Date | May 13, 2025 |
Publicly Available Date | May 13, 2025 |
Journal | Sustainability (Switzerland) |
Electronic ISSN | 2071-1050 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 15 |
Issue | 2 |
Article Number | 1643 |
DOI | https://doi.org/10.3390/su15021643 |
Keywords | Barley waste; Ultimate/proximate analysis; HHV/NCV; TGA/DTG; Pyrolysis yield |
Public URL | https://rgu-repository.worktribe.com/output/2836210 |
Files
REZA 2023 Investigation of thermochemical (VOR)
(1.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).