Skip to main content

Research Repository

Advanced Search

Generation and optimisation of real-world static and dynamic location-allocation problems with application to the telecommunications industry.

Ankrah, Reginald Boafo

Authors

Reginald Boafo Ankrah



Contributors

Benjamin Lacroix
Supervisor

Olivier Regnier-Courdert
Supervisor

Andrew Hardwick
Supervisor

Anthony Conway
Supervisor

Abstract

The location-allocation (LA) problem concerns the location of facilities and the allocation of demand, to minimise or maximise a particular function such as cost, profit or a measure of distance. Many formulations of LA problems have been presented in the literature to capture and study the unique aspects of real-world problems. However, some real-world aspects, such as resilience, are still lacking in the literature. Resilience ensures uninterrupted supply of demand and enhances the quality of service. Due to changes in population shift, market size, and the economic and labour markets - which often cause demand to be stochastic - a reasonable LA problem formulation should consider some aspect of future uncertainties. Almost all LA problem formulations in the literature that capture some aspect of future uncertainties fall in the domain of dynamic optimisation problems, where new facilities are located every time the environment changes. However, considering the substantial cost associated with locating a new facility, it becomes infeasible to locate facilities each time the environment changes. In this study, we propose and investigate variations of LA problem formulations. Firstly, we develop and study new LA formulations, which extend the location of facilities and the allocation of demand to add a layer of resilience. We apply the population-based incremental learning algorithm for the first time in the literature to solve the new novel LA formulations. Secondly, we propose and study a new dynamic formulation of the LA problem where facilities are opened once at the start of a defined period and are expected to be satisfactory in servicing customers' demands irrespective of changes in customer distribution. The problem is based on the idea that customers will change locations over a defined period and that these changes have to be taken into account when establishing facilities to service changing customers' distributions. Thirdly, we employ a simulation-based optimisation approach to tackle the new dynamic formulation. Owing to the high computational costs associated with simulation-based optimisation, we investigate the concept of Racing, an approach used in model selection, to reduce the high computational cost by employing the minimum number of simulations for solution selection.

Citation

ANKRAH, R.B. 2019. Generation and optimisation of real-world static and dynamic location-allocation problems with application to the telecommunications industry. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Thesis Type Thesis
Deposit Date Jul 16, 2020
Publicly Available Date Mar 29, 2024
Keywords Supply chain; Logistics; Location-allocation problems; Telecommunications industry
Public URL https://rgu-repository.worktribe.com/output/947844
Award Date Dec 31, 2019

Files




You might also like



Downloadable Citations