Skip to main content

Research Repository

Advanced Search

FEM analysis to optimally design end mill cutters for milling of Ti-6Al-4V.

Abstract

This paper presents an FEM analysis conducted for optimally designing end mill cutters through verifying the cutting tool forces and stresses for milling Titanium alloy Ti-6Al-4 V. Initially, the theoretical tool forces are calculated by considering the cutting edge on a cutting tool as the curve of an intersection over a spherical/flat surface based on the model developed by Lee & Altinas [1]. Considering the lowest tool forces the cutting tool parameters are taken and optimal design of end mill is decided for different sizes. Then the 3D CAD models of the end mills are developed and used for Finite Element Method to verify the cutting forces for milling Ti-6Al-4 V. The cutting tool forces, stress, strain concentration (s), tool wear, and temperature of the cutting tool with the different geometric shapes are simulated considering Ti-6Al-4 V as work piece material. Finally, the simulated and theoretical values are compared and the optimal design of cutting tool for different sizes are validated. The present approach considers to improve the quality of machining surface and tool life with effects of the various parameters concerning the oblique cutting process namely axial, radial and tangential forces. Various simulated test cases are presented to highlight the approach on optimally designing end mill cutters.

Citation

KUMAR, V., EAKAMBARAM, A. and ARIVAZHAGAN, A. 2014. FEM analysis to optimally design end mill cutters for milling of Ti-6Al-4 V. Procedia engineering [online], 97: proceedings of 12th Global congress on manufacturing and management 2014 (GCMM 2014), 8-10 December 2014, Vellore, India, pages 1237-1246. Available from: https://doi.org/10.1016/j.proeng.2014.12.402

Journal Article Type Conference Paper
Conference Name 12th Glogal congress on manufacturing and management 2014 (GCMM 2014)
Acceptance Date Dec 8, 2014
Online Publication Date Dec 30, 2014
Publication Date Dec 31, 2014
Deposit Date Oct 27, 2020
Publicly Available Date
Journal Procedia Engineering
Print ISSN 1877-7058
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 97
Pages 1237-1236
DOI https://doi.org/10.1016/j.proeng.2014.12.402
Keywords End mill; FEM analsis; Tool force; Ti-6Al-4 V
Public URL https://rgu-repository.worktribe.com/output/976175


Downloadable Citations