Skip to main content

Research Repository

Advanced Search

Deep learning for symbols detection and classification in engineering drawings. (2020)
Journal Article
ELYAN, E., JAMIESON, L. and ALI-GOMBE, A. 2020. Deep learning for symbols detection and classification in engineering drawings. Neural networks [online], 129, pages 91-102. Available from: https://doi.org/10.1016/j.neunet.2020.05.025

Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly due to the need to improve business practic... Read More about Deep learning for symbols detection and classification in engineering drawings..

Towards a reliable face recognition system. (2020)
Conference Proceeding
ALI-GOMBE, A., ELYAN, E. and ZWIEGELAAR, J. 2020. Towards a reliable face recognition system. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 304-316. Available from: https://doi.org/10.1007/978-3-030-48791-1_23

Face Recognition (FR) is an important area in computer vision with many applications such as security and automated border controls. The recent advancements in this domain have pushed the performance of models to human-level accuracy. However, the va... Read More about Towards a reliable face recognition system..

Learning from small and imbalanced dataset of images using generative adversarial neural networks. (2019)
Thesis
ALI-GOMBE, A. 2019. Learning from small and imbalanced dataset of images using generative adversarial neural networks. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

The performance of deep learning models is unmatched by any other approach in supervised computer vision tasks such as image classification. However, training these models requires a lot of labeled data, which are not always available. Labelling a ma... Read More about Learning from small and imbalanced dataset of images using generative adversarial neural networks..