Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Domain-specific lexicon generation for emotion detection from text. (2018)
Thesis
BANDHAKAVI, A. 2018. Domain-specific lexicon generation for emotion detection from text. Robert Gordon University, PhD thesis.

Emotions play a key role in effective and successful human communication. Text is popularly used on the internet and social media websites to express and share emotions, feelings and sentiments. However useful applications and services built to under... Read More about Domain-specific lexicon generation for emotion detection from text..

Opinion context extraction for aspect sentiment analysis.
Presentation / Conference Contribution
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and LUHAR, R. 2018. Opinion context extraction for aspect sentiment analysis. In Proceedings of the 12th Association for the Advancement of Artificial Intelligence (AAAI) international conference on web and social media (ICWSM 2018), 25-28 June 2018, Palo Alto, USA. Palo Alto: AAAI Press [online], pages 564-567. Available from: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM18/paper/view/17859

Sentiment analysis is the computational study of opinionated text and is becoming increasing important to online commercial applications. However, the majority of current approaches determine sentiment by attempting to detect the overall polarity of... Read More about Opinion context extraction for aspect sentiment analysis..

Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge.
Presentation / Conference Contribution
BANDHAKAVI, A., WIRATUNGA, N., MASSIE, S. and LUHAR, R. 2018. Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence xxxv: proceedings of the 38th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) International conference on innovative techniques and applications of artificial intelligence (AI-2018), 11-13 December 2018, Cambridge, UK. Lecture notes in artificial intelligence, 11311. Cham: Springer [online], pages 357-371. Available from: https://doi.org/10.1007/978-3-030-04191-5_30

Aspect-level sentiment analysis of customer feedback data when done accurately can be leveraged to understand strong and weak performance points of businesses and services and also formulate critical action steps to improve their performance. In this... Read More about Context extraction for aspect-based sentiment analytics: combining syntactic, lexical and sentiment knowledge..