Skip to main content

Research Repository

Advanced Search

Personalised exercise recognition towards improved self-management of musculoskeletal disorders. (2021)
Thesis
WIJEKOON, A. 2021. Personalised exercise recognition towards improved self-management of musculoskeletal disorders. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1358224

Musculoskeletal Disorders (MSD) have been the primary contributor to the global disease burden, with increased years lived with disability. Such chronic conditions require self-management, typically in the form of maintaining an active lifestyle whil... Read More about Personalised exercise recognition towards improved self-management of musculoskeletal disorders..

Personalised meta-learning for human activity recognition with few-data. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Personalised meta-learning for human activity recognition with few-data. In Bramer, M. and Ellis, R. (eds.) Artificial intelligence XXXVII: proceedings of 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 15-17 December 2020, [virtual conference]. Lecture notes in artificial intelligence, 12498. Cham: Springer [online], pages 79-93. Available from: https://doi.org/10.1007/978-3-030-63799-6_6

State-of-the-art methods of Human Activity Recognition (HAR) rely on having access to a considerable amount of labelled data to train deep architectures with many train-able parameters. This becomes prohibitive when tasked with creating models that... Read More about Personalised meta-learning for human activity recognition with few-data..

Learning to compare with few data for personalised human activity recognition. (2020)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A. and COOPER, K. 2020. Learning to compare with few data for personalised human activity recognition. In Watson, I and Weber, R. (eds.) Case-based reasoning research and development: proceedings of the 28th International conference on case-based reasoning research and development (ICCBR 2020), 8-12 June 2020, Salamanca, Spain [virtual conference]. Lecture notes in computer science, 12311. Cham: Springer [online], pages 3-14. Available from: https://doi.org/10.1007/978-3-030-58342-2_1

Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist... Read More about Learning to compare with few data for personalised human activity recognition..

Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N. and COOPER, K. 2020. Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9206941. Available from: https://doi.org/10.1109/IJCNN48605.2020.9206941

Exercise adherence is a key component of digital behaviour change interventions for the self-management of musculoskeletal pain. Automated monitoring of exercise adherence requires sensors that can capture patients performing exercises and Machine Le... Read More about Heterogeneous multi-modal sensor fusion with hybrid attention for exercise recognition..

Evaluating the transferability of personalised exercise recognition models. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. 2020. Evaluating the transferability of personalised exercise recognition models. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020): proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 32-44. Available from: https://doi.org/10.1007/978-3-030-48791-1_3

Exercise Recognition (ExR) is relevant in many high impact domains, from health care to recreational activities to sports sciences. Like Human Activity Recognition (HAR), ExR faces many challenges when deployed in the real-world. For instance, typica... Read More about Evaluating the transferability of personalised exercise recognition models..

Learning to recognise exercises for the self-management of low back pain. (2020)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., COOPER, K. and BACH, K. 2020. Learning to recognise exercises for the self-management of low back pain. In Barták, R. and Bell, E. (eds.). Proceedings of the 33rd International Florida Artificial Intelligence Research Society (FLAIRS) 2020 conference (FLAIRS-33), 17-20 May 2020, Miami Beach, USA. Palo Alto: AAAI Press [online], pages 347-352. Available from: https://aaai.org/ocs/index.php/FLAIRS/FLAIRS20/paper/view/18460

Globally, Low back pain (LBP) is one of the top three contributors to years lived with disability. Self-management with an active lifestyle is the cornerstone for preventing and managing LBP. Digital interventions are introduced in the recent past to... Read More about Learning to recognise exercises for the self-management of low back pain..

Preface: case-based reasoning and deep learning. (2020)
Conference Proceeding
MARTIN, K., KAPETANAKIS, S., WIJEKOON, A., AMIN, K. and MASSIE, S. 2019. Preface: case-based reasoning and deep learning. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of the 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR Workshop proceedings, 2567. Aachen: CEUR-WS [online], pages 6-7. Available from: http://ceur-ws.org/Vol-2567/cbr_dl_preface.pdf

Recent advances in deep learning (DL) have helped to usher in a new wave of confidence in the capability of artificial intelligence. Increasingly, we are seeing DL architectures out perform long established state-of-the-art algorithms in a numb... Read More about Preface: case-based reasoning and deep learning..

A knowledge-light approach to personalised and open-ended human activity recognition. (2020)
Journal Article
WIJEKOON, A., WIRATUNGA, N., SANI, S. and COOPER, K. 2020. A knowledge-light approach to personalised and open-ended human activity recognition. Knowledge-based systems [online], 192, article ID 105651. Available from: https://doi.org/10.1016/j.knosys.2020.105651

Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part de... Read More about A knowledge-light approach to personalised and open-ended human activity recognition..

Human activity recognition with deep metric learners. (2020)
Conference Proceeding
MARTIN, K., WIJEKOON, A. and WIRATUNGA, N. 2019. Human activity recognition with deep metric learners. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR Workshop Proceedings, 2567. Aachen: CEUR-WS [online], pages 8-17. Available from: http://ceur-ws.org/Vol-2567/paper1.pdf

Establishing a strong foundation for similarity-based return is a top priority in Case-Based Reasoning (CBR) systems. Deep Metric Learners (DMLs) are a group of neural network architectures which learn to optimise case representations for similarity-... Read More about Human activity recognition with deep metric learners..

Improving kNN for human activity recognition with privileged learning using translation models. (2018)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., SANI, S., MASSIE, S. and COOPER, K. 2018. Improving kNN for human activity recognition with privileged learning using translation models. In Cox, M.T., Funk, P. and Begum, S. (eds.) Case-based reasoning research and development: proceedings of the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Lecture notes in computer science, 11156. Cham: Springer [online], pages 448-463. Available from: https://doi.org/10.1007/978-3-030-01081-2_30

Multiple sensor modalities provide more accurate Human Activity Recognition (HAR) compared to using a single modality, yet the latter is preferred by consumers as it is more convenient and less intrusive. This presents a challenge to researchers, as... Read More about Improving kNN for human activity recognition with privileged learning using translation models..

Reasoning with multi-modal sensor streams for m-health applications. (2018)
Conference Proceeding
WIJEKOON, A. 2018. Reasoning with multi-modal sensor streams for m-health applications. In Minor, M. (ed.) Workshop proceedings for the 26th International conference on case-based reasoning (ICCBR 2018), 9-12 July 2018, Stockholm, Sweden. Stockholm: ICCBR [online], pages 234-238. Available from: http://iccbr18.com/wp-content/uploads/ICCBR-2018-V3.pdf#page=234

Musculoskeletal Disorders have a long term impact on individuals as well as on the community. They require self-management, typically in the form of maintaining an active lifestyle that adheres to prescribed exercises regimes. In the recent past m-he... Read More about Reasoning with multi-modal sensor streams for m-health applications..