Skip to main content

Research Repository

Advanced Search

All Outputs (15)

A dominance-based surrogate classifier for multi-objective evolutionary algorithms. (2024)
Presentation / Conference Contribution
BANDA, T.M. and ZĂVOIANU, A.-C. 2025. A dominance-based surrogate classifier for multi-objective evolutionary algorithms. In Bramer, M. and Stahl, F. (eds.) Artificial Intelligence XLI: proceedings of the 44th SGAI (Specialist Group on Artificial Intelligence) International conference on artificial intelligence 2024 (AI 2024), 17-19 December 2024, Cambridge, UK. Lecture notes in computer science, 15446. Cham: Springer [online], part I, pages 268-281. Available from: https://doi.org/10.1007/978-3-031-77915-2_19

The application of Multi-Objective Evolutionary Algorithms (MOEAs) is often constrained when addressing computationally expensive Multi-Objective Optimisation Problems (MOOPs). To mitigate this, we propose a dominance-based surrogate classifier that... Read More about A dominance-based surrogate classifier for multi-objective evolutionary algorithms..

On the multi-objective optimization of wind farm cable layouts with regard to cost and robustness. (2024)
Presentation / Conference Contribution
CHRISTIE, L.A., SAHIN, A., OGUNSEMI, A., ZĂVOIANU, A.-C. and MCCALL, J.A.W. 2024. On the multi-objective optimization of wind farm cable layouts with regard to cost and robustness. In Affenzeller, M., Winkler, S.M., Kononova, A.V. et al. (eds). Parallel problem solving from nature (PPSN XVIII): proceedings of the 18th Parallel problem solving from nature international conference 2024 (PPSN 2024), 14-18 September 2024, Hagenberg, Austria. Lecture notes in computer science, 15151. Cham: Springer [online], pages 367-382. Available from: https://doi.org/10.1007/978-3-031-70085-9_23

Offshore wind farms (OWFs) have emerged as a vital component in the transition to renewable energy, especially for countries like the United Kingdom with abundant shallow coastal waters suitable for wind energy exploitation. As net-zero emissions tar... Read More about On the multi-objective optimization of wind farm cable layouts with regard to cost and robustness..

Cost and performance comparison of holistic solution approaches for complex supply chains on a novel linked problem benchmark. (2024)
Presentation / Conference Contribution
OGUNSEMI, A., MCCALL, J., ZAVOIANU, C. and CHRISTIE, L.A. 2024. Cost and performance comparison of holistic solution approaches for complex supply chains on a novel linked problem benchmark. In Proceedings of the Genetic and evolutionary computation conference 2024 (GECCO'24), 14-18 July 2024, Melbourne, Australia. New York: Association for Computing Machinery (ACM) [online], pages 1327- 1335. Available from: https://doi.org/10.1145/3638529.3654163

Modern supply chains are complex structures of interacting units exchanging goods and services. Business decisions made by individual units in the supply chain have knock-on effects on decisions made by successor units in the chain. Linked Optimisati... Read More about Cost and performance comparison of holistic solution approaches for complex supply chains on a novel linked problem benchmark..

Optimising linear regression for modelling the dynamic thermal behaviour of electrical machines using NSGA-II, NSGA-III and MOEA/D. (2023)
Presentation / Conference Contribution
BANDA, T.M., ZĂVOIANU, A.-C., PETROVSKI, A., WÖCKINGER, D. and BRAMERDORFER, G. 2024. Optimising linear regression for modelling the dynamic thermal behaviour of electrical machines using NSGA-II, NSGA-III and MOEA/D. In Stratulat, S., Marin, M., Negru, V. and Zaharie, D. (eds.) Proceedings of the 25th International symposium on symbolic and numeric algorithms for scientific computing (SYNASC 2023), 11-14 September 2023, Nancy, France. Los Alamitos: IEEE Computer Society [online], pages 186-193. Available from: https://doi.org/10.1109/SYNASC61333.2023.00032

For engineers to create durable and effective electrical assemblies, modelling and controlling heat transfer in rotating electrical machines (such as motors) is crucial. In this paper, we compare the performance of three multi-objective evolutionary... Read More about Optimising linear regression for modelling the dynamic thermal behaviour of electrical machines using NSGA-II, NSGA-III and MOEA/D..

Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement. (2023)
Presentation / Conference Contribution
COLLINS, J., ZĂVOIANU, A.-C. and MCCALL, J.A.W. 2023. Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI (Specialist Group on Artificial Intelligence) Artificial intelligence international conference 2023 (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 451-464. Available from: https://doi.org/10.1007/978-3-031-47994-6_39

Rosters are often used for real-world staff scheduling requirements. Multiple design factors such as demand variability, shift type placement, annual leave requirements, staff well-being and the placement of trainees need to be considered when constr... Read More about Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement..

Explaining a staff rostering problem by mining trajectory variance structures. (2023)
Presentation / Conference Contribution
FYVIE, M., MCCALL, J.A.W., CHRISTIE, L.A., ZĂVOIANU, A.-C., BROWNLEE, A.E.I. and AINSLIE, R. 2023. Explaining a staff rostering problem by mining trajectory variance structures. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI international conference on artificial intelligence (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 275-290. Available from: https://doi.org/10.1007/978-3-031-47994-6_27

The use of Artificial Intelligence-driven solutions in domains involving end-user interaction and cooperation has been continually growing. This has also lead to an increasing need to communicate crucial information to end-users about algorithm behav... Read More about Explaining a staff rostering problem by mining trajectory variance structures..

On discovering optimal trade-offs when introducing new routes in existing multi-modal public transport systems. (2022)
Presentation / Conference Contribution
HAN, K., CHRISTIE, L.A., ZAVOIANU, A.-C. and MCCALL, J. 2022. On discovering optimal trade-offs when introducing new routes in existing multi-modal public transport systems. In Moreno-Díaz, R., Pichler, F. and Quesada-Arencibia, A. (eds.) Computer aided systems theory: Eurocast 2022; revised selected papers from the 18th International conference on computer aided systems theory (Eurocast 2022), 20-25 February 2022, Las Palmas, Spain. Lecture notes in computer science, 13789. Cham: Springer [online], pages 104-111. Available from: https://doi.org/10.1007/978-3-031-25312-6_12

While self-driving technology is still being perfected, public transport authorities are increasingly interested in the ability to model and optimise the benefits of adding connected and autonomous vehicles (CAVs) to existing multi-modal transport sy... Read More about On discovering optimal trade-offs when introducing new routes in existing multi-modal public transport systems..

Lightweight interpolation-based surrogate modelling for multi-objective continuous optimisation. (2022)
Presentation / Conference Contribution
ZAVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2022. Lightweight Interpolation-based surrogate modelling for multiobjective continuous optimisation. In Moreno-Díaz, R., Pichler, F. and Quesada-Arencibia, A. (eds.) Computer aided systems theory: Eurocast 2022; revised selected papers from the 18th International conference on computer aided systems theory (Eurocast 2022), 20-25 February 2022, Las Palmas, Spain. Lecture notes in computer science, 13789. Cham: Springer [online], pages 53-60. Available from: https://doi.org/10.1007/978-3-031-25312-6_6

We propose two surrogate-based strategies for increasing the convergence speed of multi-objective evolutionary algorithms (MOEAs) by stimulating the creation of high-quality individuals early in the run. Both offspring generation strategies are desig... Read More about Lightweight interpolation-based surrogate modelling for multi-objective continuous optimisation..

Optimising the introduction of connected and autonomous vehicles in a public transport system using macro-level mobility simulations and evolutionary algorithms. (2021)
Presentation / Conference Contribution
HAN, K., CHRISTIE, L.A., ZAVOIANU, A.-C. and MCCALL, J. 2021. Optimising the introduction of connected and autonomous vehicles in a public transport system using macro-level mobility simulations and evolutionary algorithms. Presented at 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference].

The past five years have seen a rapid development of plans and test pilots aimed at introducing connected and autonomous vehicles (CAVs) in public transport systems around the world. Using a real-world scenario from the Leeds Metropolitan Area as a c... Read More about Optimising the introduction of connected and autonomous vehicles in a public transport system using macro-level mobility simulations and evolutionary algorithms..

Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. (2021)
Presentation / Conference Contribution
LIEFOOGHE, A., VEREL, S., LACROIX, B., ZĂVOIANU, A.-C. and MCCALL, J. 2021. Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. In Chicano, F. (ed) Proceedings of 2021 Genetic and evolutionary computation conference (GECCO 2021), 10-14 July 2021, [virtual conference]. New York: ACM [online], pages 421-429. Available from: https://doi.org/10.1145/3449639.3459353

In this paper, we demonstrate the application of features from landscape analysis, initially proposed for multi-objective combinatorial optimisation, to a benchmark set of 1 200 randomly-generated multiobjective interpolated continuous optimisation p... Read More about Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems..

Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. (2020)
Presentation / Conference Contribution
ZAVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2020. Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. In Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M. and Trautmann, H. (eds.) Parallel problem solving from nature: PPSN XVI: proceedings of the 16th Parallel problem solving from nature international conference (PPSN 2020), 5-9 September 2020, Leiden, The Netherlands. Lecture notes in computer science, 12269. Cham; Springer, part 1, pages 287-300. Available from: https://doi.org/10.1007/978-3-030-58112-1_20

We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time converge... Read More about Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems..

Critical analysis of the suitability of surrogate models for finite element method application in catalog-based suspension bushing design. (2020)
Presentation / Conference Contribution
CERNUDA, C., LLAVORI, I., ZAVOIANU, A.-C., AGUIRRE, A., ZABALA, A. and PLAZA, J. 2020. Critical analysis of the suitability of surrogate models for finite element method application in catalog-based suspension bushing design. In Proceedings of 25th Institute of Electrical and Electronics Engineers (IEEE) Emerging technologies and factory automation international conference 2020 (ETFA 2020), 8-11 September 2020, Vienna, Austria. Piscataway: IEEE [online], article ID 9212166, pages 829-836. Available from: https://doi.org/10.1109/ETFA46521.2020.9212166

This work presents a critical analysis of the suitability of surrogate models for finite element method application. A case study of a finite element method (FEM) structural problem was selected in order to test the performance of surrogate algorithm... Read More about Critical analysis of the suitability of surrogate models for finite element method application in catalog-based suspension bushing design..

On modeling the dynamic thermal behavior of electrical machines using genetic programming and artificial neural networks. (2020)
Presentation / Conference Contribution
ZAVOIANU, A.-C., KITZBERGER, M., BRAMERDORFER, G. and SAMINGER-PLATZ, S. 2020. On modeling the dynamic thermal behavior of electrical machines using genetic programming and artificial neural networks. In Moreno-Díaz, R., Pichler, F. and Quesada-Arencibia, A. (eds.) Computer aided systems theory: EUROCAST 2019: revised selected papers from the proceedings of the 17th International conference on computer aided systems theory (EUROCAST 2019), 17-22 February 2019, Las Palmas de Gran Canaria, Spain. Lecture notes in computer science, 12013. Cham: Springer [online], part 1, pages 319-326. Available from: https://doi.org/10.1007/978-3-030-45093-9_39

We describe initial attempts to model the dynamic thermal behavior of electrical machines by evaluating the ability of linear and non-linear (regression) modeling techniques to replicate the performance of simulations carried out using a lumped param... Read More about On modeling the dynamic thermal behavior of electrical machines using genetic programming and artificial neural networks..

Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver. (2019)
Presentation / Conference Contribution
ZAVOIANU, A.-C., SAMINGER-PLATZ, S. and AMRHEIN, W. 2019. Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver. In Proceedings of the 2019 Institute of Electrical and Electronics Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2019), 10-13 June 2019, Wellington, New Zealand. Piscataway: IEEE [online], article number 8790133, pages 3078-3085. Available from: https://doi.org/10.1109/CEC.2019.8790133

We describe and compare two steady state asynchronous parallelization variants for DECMO2++, a recently proposed multi-objective coevolutionary solver that generally displays a robust run-time convergence behavior. The two asynchronous variants were... Read More about Comparative analysis of two asynchronous parallelization variants for a multi-objective coevolutionary solver..

Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm. (2018)
Presentation / Conference Contribution
ZAVOIANU, A.-C., SAMINGER-PLATZ, S., LUGHOFER, E. and AMRHEIN, W. 2018. Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm. In Aguirre, H. (ed.) Proceedings of the 2018 Genetic and evolutionary computation conference (GECCO'18), 15-19 July 2018, Kyoto, Japan. New York: Association for Computing Machinery [online], pages 793-800. Available from: https://doi.org/10.1145/3205455.3205549

We describe two enhancements that significantly improve the rapid convergence behavior of DECM02 - a previously proposed robust coevolutionary algorithm that integrates three different multi-objective space exploration paradigms: differential evoluti... Read More about Two enhancements for improving the convergence speed of a robust multi-objective coevolutionary algorithm..