Skip to main content

Research Repository

Advanced Search

All Outputs (163)

Two-click based fast small object annotation in remote sensing images. (2024)
Journal Article
LEI, L., FANG, Z., REN, J., GAMBA, P., ZHENG, J. and ZHAO, H. 2024. Two-click based fast small object annotation in remote sensing images. IEEE transactions of geoscience and remote sensing [online], 62, article number 5639513. Available from: https://doi.org/10.1109/tgrs.2024.3442732

In the remote sensing field, detecting small objects is a pivotal task, yet achieving high performance in deep learning-based detectors heavily relies on extensive data annotation. The challenge intensifies as small objects in remote sensing imagery... Read More about Two-click based fast small object annotation in remote sensing images..

Sparse autoencoder based hyperspectral anomaly detection with the singular spectrum analysis based spectral denoising. (2024)
Presentation / Conference Contribution
LI, Y., REN, J., GAO, Z. and SUN, G. 2024. Sparse autoencoder based hyperspectral anomaly detection with the singular spectrum analysis based spectral denoising. In Proceedings of the 2024 IEEE International geoscience and remote sensing symposium (IGARSS 2024), Athens, Greece, 7-12 July 2024. Piscataway: IEEE [online], pages 9210-9213. Available from: https://doi.org/10.1109/igarss53475.2024.10641314

As an effective tool for monitoring surface irregularities in remote sensing, hyperspectral anomaly detection (HAD) has garnered increasing attention. However, how to improve the detection accuracy remains a formidable challenge, due mainly to the no... Read More about Sparse autoencoder based hyperspectral anomaly detection with the singular spectrum analysis based spectral denoising..

SSA-LHCD: a singular spectrum analysis-driven lightweight network with 2-D self-attention for hyperspectral change detection. (2024)
Journal Article
LI, Y., REN, J., YAN, Y., SUN, G. and MA, P. 2024. SSA-LHCD: a singular spectrum analysis-driven lightweight network with 2-D self-attention for hyperspectral change detection. Remote sensing [online], 16(3), article number 2353. Available from: https://doi.org/10.3390/rs16132353

As an emerging research hotspot in contemporary remote sensing, hyperspectral change detection (HCD) has attracted increasing attention in remote sensing Earth observation, covering land mapping changes and anomaly detection. This is primarily attrib... Read More about SSA-LHCD: a singular spectrum analysis-driven lightweight network with 2-D self-attention for hyperspectral change detection..

Enrich, distill and fuse: generalized few-shot semantic segmentation in remote sensing leveraging foundation model's assistance. (2024)
Presentation / Conference Contribution
GAO, T., AO, W., WANG, X.-A., ZHAO, Y., MA, P., XIE, M., FU, H., REN, J. and GAO, Z. 2024. Enrich, distill and fuse: generalized few-shot semantic segmentation in remote sensing leveraging foundation model’s assistance. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) Computer Society conference on Computer vision and pattern recognition workshops (CVPRW 2024), 16-22 June 2024, Seattle, WA, USA. Piscataway: IEEE [online], pages 2771-2780. Available from: https://doi.org/10.1109/CVPRW63382.2024.00283

Generalized few-shot semantic segmentation (GFSS) unifies semantic segmentation with few-shot learning, showing great potential for Earth observation tasks under data scarcity conditions, such as disaster response, urban planning, and natural resourc... Read More about Enrich, distill and fuse: generalized few-shot semantic segmentation in remote sensing leveraging foundation model's assistance..

Prompting-to-distill semantic knowledge for few-shot learning. (2024)
Journal Article
JI, H., GAO, Z., REN, J., WANG, X.-A., GAO, T., SUN, W. and MA, P. 2024. Prompting-to-distill semantic knowledge for few-shot learning. IEEE geoscience and remote sensing letters [online], 21, article 6011605. Available from: https://doi.org/10.1109/lgrs.2024.3414505

Recognizing visual patterns in low-data regime necessitates deep neural networks to glean generalized representations from limited training samples. In this paper, we propose a novel few-shot classification method, namely ProDFSL, leveraging multi-mo... Read More about Prompting-to-distill semantic knowledge for few-shot learning..

ABBD: accumulated band-wise binary distancing for unsupervised parameter-free hyperspectral change detection. (2024)
Journal Article
LI, Y., REN, J., YAN, Y., MA, P., ASSAAD, M. and GAO, Z. 2024. ABBD: accumulated band-wise binary distancing for unsupervised parameter-free hyperspectral change detection. IEEE journal of selected topics in applied earth observations and remote sensing [online], 17, pages 9880-9893. Available from: https://doi.org/10.1109/JSTARS.2024.3407212

As a fundamental task in remote sensing earth observation, hyperspectral change detection (HCD) aims to identify the changed pixels in bi-temporal hyperspectral images (HSIs). However, the water-absorption effect, poor weather conditions, noise and i... Read More about ABBD: accumulated band-wise binary distancing for unsupervised parameter-free hyperspectral change detection..

Image enhancement for UAV visual SLAM applications: analysis and evaluation. (2024)
Presentation / Conference Contribution
TIAN, Y., YUE, H. and REN, J. 2024. Image enhancement for UAV visual SLAM applications: analysis and evaluation. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 51-61. Available from: https://doi.org/10.1007/978-981-97-1417-9_20.

Although simultaneous localisation and mapping (SLAM) has been widely applied in a wide range of robotics and navigation applications, its applicability is severely affected by the quality of the acquired images, especially for those in unmanned aeri... Read More about Image enhancement for UAV visual SLAM applications: analysis and evaluation..

Underwater object detection for smooth and autonomous operations of naval missions: a pilot Dataset. (2024)
Presentation / Conference Contribution
YAN, Y., LI, Y., LIN, H., SARKER, M.M.K., REN, J. and MCCALL, J. 2024. Underwater object detection for smooth and autonomous operations of naval missions: a pilot dataset. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 113-122. Available from: https://doi.org/10.1007/978-981-97-1417-9_11

Underwater object detection is essential for ensuring autonomous naval operations. However, this task is challenging due to the complexities of underwater environments that often degrade image quality, thereby hampering the performance of detection a... Read More about Underwater object detection for smooth and autonomous operations of naval missions: a pilot Dataset..

MLM-LSTM: multi-layer memory learning framework based on LSTM for hyperspectral change detection. (2024)
Presentation / Conference Contribution
LI, Y., YAN, Y. and REN, C., LIU, Q. and SUN, H. 2024. MLM-LSTM: multi-layer memory learning framework based on LSTM for hyperspectral change detection. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 51-61. Available from: https://doi.org/10.1007/978-981-97-1417-9_5.

Hyperspectral change detection plays a critical role in remote sensing by leveraging spectral and spatial information for accurate land cover variation identification. Long short-term memory (LSTM) has demonstrated its effectiveness in capturing depe... Read More about MLM-LSTM: multi-layer memory learning framework based on LSTM for hyperspectral change detection..

Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies. (2024)
Presentation / Conference Contribution
HASAN, M.J., ELYAN, E., YAN, Y., REN, J. and SARKER, M.M.K. 2024. Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 220-228. Available from: https://doi.org/10.1007/978-981-97-1417-9_21

Retrofitting and thermographic survey (TS) companies in Scotland collaborate with social housing providers to tackle fuel poverty. They employ ground-level infrared (IR) camera-based-TSs (GIRTSs) for collecting thermal images to identify the heat los... Read More about Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies..

HRMOT: two-step association based multi-object tracking in satellite videos enhanced by high-resolution feature fusion. (2024)
Presentation / Conference Contribution
WU, Y., ZHANG, X., LIU, Q., XUE, D., SUN, H. and REN, J. 2024. HRMOT: two-step association based multi-object tracking in satellite videos enhanced by high-resolution feature fusion. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 251-263. Available from: https://doi.org/10.1007/978-981-97-1417-9_24

Multi-object tracking in satellite videos (SV-MOT) is one of the most challenging tasks in remote sensing, its difficulty mainly comes from the low spatial resolution, small target and extremely complex background. The widely studied multi-object tra... Read More about HRMOT: two-step association based multi-object tracking in satellite videos enhanced by high-resolution feature fusion..

Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning. (2024)
Journal Article
YAN, Y., REN, J., SUN, H. and WILLIAMS, R. 2024. Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning. IEEE transactions on industrial informatics [online], 20(8), pages 9963-9975. Available from: https://doi.org/10.1109/TII.2024.3384609

Measuring the purity of the metal powder is essential to maintain the quality of additive manufacturing products. Contamination is a significant concern, leading to cracks and malfunctions in the final products. Conventional assessment methods focus... Read More about Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning..

DICAM: deep inception and channel-wise attention modules for underwater image enhancement. (2024)
Journal Article
FARHADI TOLIE, H., REN, J. and ELYAN, E. 2024. DICAM: deep inception and channel-wise attention modules for underwater image enhancement. Neurocomputing [online], 584, article number 127585. Available from: https://doi.org/10.1016/j.neucom.2024.127585

In underwater environments, imaging devices suffer from water turbidity, attenuation of lights, scattering, and particles, leading to low quality, poor contrast, and biased color images. This has led to great challenges for underwater condition monit... Read More about DICAM: deep inception and channel-wise attention modules for underwater image enhancement..

Detection-driven exposure-correction network for nighttime drone-view object detection. (2024)
Journal Article
XI, Y., JIA, W., MIAO, Q., FENG, J., REN, J. and LUO, H. 2024. Detection-driven exposure-correction network for nighttime drone-view object detection. IEEE transactions on geoscience and remote sensing [online], 62, article number 5605014. Available from: https://doi.org/10.1109/TGRS.2024.3351134

Drone-view object detection (DroneDet) models typically suffer a significant performance drop when applied to nighttime scenes. Existing solutions attempt to employ an exposure-adjustment module to reveal objects hidden in dark regions before detecti... Read More about Detection-driven exposure-correction network for nighttime drone-view object detection..

Feature aggregation and region-aware learning for detection of splicing forgery. (2024)
Journal Article
XU, Y., ZHENG, J., REN, J. and FANG, A. 2024. Feature aggregation and region-aware learning for detection of splicing forgery. IEEE signal processing letters [online], 31, pages 696-700. Available from: https://doi.org/10.1109/LSP.2023.3348689

Detection of image splicing forgery become an increasingly difficult task due to the scale variations of the forged areas and the covered traces of manipulation from post-processing techniques. Most existing methods fail to jointly multi-scale local... Read More about Feature aggregation and region-aware learning for detection of splicing forgery..

Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm. (2023)
Journal Article
ZHAO, J., LI, Y., LEI, H., REN, J., ZHANG, F. and SHEN, H. 2024. Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm. ACTA geophysica [online], 72(4), pages 2447-2467. Available from: https://doi.org/10.1007/s11600-023-01222-1

Based on an analysis of the information processing mechanism in the primary visual cortex of biological vision, this study proposes an integration method of bar-combination of shifted filter responses (B-COSFIRE) filter with the differential evolutio... Read More about Seismic events extraction method based on the B-COSFIRE filter combined with the differential evolution algorithm..

Automatic geolocation and measuring of offshore energy infrastructure with multimodal satellite data. (2023)
Journal Article
MA, P., MACDONALD, M., ROUSE, S. and REN, J. 2024. Automatic geolocation and measuring of offshore energy infrastructure with multimodal satellite data. IEEE journal of oceanic engineering [online], 49(1), pages 66-79. Available from: https://doi.org/10.1109/joe.2023.3319741

With the increasing trend of energy transition to low-carbon economies, the rate of offshore structure installation and removal will rapidly accelerate through offshore renewable energy development and oil and gas decommissioning. Knowledge of the lo... Read More about Automatic geolocation and measuring of offshore energy infrastructure with multimodal satellite data..

PWDformer: deformable transformer for long-term series forecasting. (2023)
Journal Article
WANG, Z., RAN, H., REN, J. and SUN, M. 2024. PWDformer: deformable transformer for long-term series forecasting. Pattern recognition [online], 147, article number 110118. Available from: https://doi.org/10.1016/j.patcog.2023.110118

Long-term forecasting is of paramount importance in numerous scenarios, including predicting future energy, water, and food consumption. For instance, extreme weather events and natural disasters can profoundly impact infrastructure operations and po... Read More about PWDformer: deformable transformer for long-term series forecasting..

Siamese residual neural network for musical shape evaluation in piano performance assessment. (2023)
Presentation / Conference Contribution
LI, X., WEISS, S., YAN, Y., LI, Y., REN, J., SORAGHAN, J. and GONG, M. 2023. Siamese residual neural network for musical shape evaluation in piano performance assessment. In Proceedings of the 31st European signal processing conference 2023 (EUSIPCO 2023), 4-8 September 2023, Helsinki, Finland. Piscataway: IEEE [online], pages 216-220. Available from: https://doi.org/10.23919/EUSIPCO58844.2023.10289901

Understanding and identifying musical shape plays an important role in music education and performance assessment. To simplify the otherwise time- and cost-intensive musical shape evaluation, in this paper we explore how artificial intelligence (AI)... Read More about Siamese residual neural network for musical shape evaluation in piano performance assessment..

Early detection of citrus anthracnose caused by Colletotrichum gloeosporioides using hyperspectral imaging. (2023)
Journal Article
TANG, Y., YANG, J., ZHUANG, J., HOU, C., MIAO, A., REN, J., HUANG, H., TAN, Z. and PALIWAL, J. 2023. Early detection of citrus anthracnose caused by Colletotrichum gloeosporioides using hyperspecral imaging. Computers and electronics in agriculture [online], 214, article number 108348. Available from: https://doi.org/10.1016/j.compag.2023.108348

Citrus fruit are susceptible to Colletotrichum gloeosporioides infestation during postharvest and shelf storage. Early and accurate detection of citrus anthracnose is conducive for carrying out targeted pesticide control and mitigating the potential... Read More about Early detection of citrus anthracnose caused by Colletotrichum gloeosporioides using hyperspectral imaging..