A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture.
(2024)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MCCALL, J., HAN, K. and LIEW, A.W.-C. 2024. A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2024), 30 June - 05 July 2024, Yokohama, Japan. Available from: https://doi.org/10.1109/CEC60901.2024.10611960
Deep neural networks (DNN) has achieved great successes across multiple domains. In recent years, a number of approaches have emerged on automatically finding the optimal DNN configurations. A technique among these approaches which show great promise... Read More about A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture..