Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Event classification on subsea pipeline inspection data using an ensemble of deep learning classifiers. (2024)
Journal Article
DANG, T., NGUYEN, T.T., LIEW, A.W.-C. and ELYAN, E. 2025. Event classification on subsea pipeline inspection data using an ensemble of deep learning classifiers. Cognitive computation [online], 17(1), article 10. Available from: https://doi.org/10.1007/s12559-024-10377-y

Subsea pipelines are the backbone of the modern oil and gas industry, transporting a total of 28% of global oil production. Due to several factors, such as corrosion or deformations, the pipelines might degrade over time, which might lead to serious... Read More about Event classification on subsea pipeline inspection data using an ensemble of deep learning classifiers..

Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systems. (2024)
Journal Article
DANG, T., NGUYEN, T.T., LIEW, A.W.-C., ELYAN, E. and MCCALL, J. 2024. Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systems. Knowledge-based systems [online], 304, article number 112522. Available from: https://doi.org/10.1016/j.knosys.2024.112522

Ensemble learning is a powerful machine learning strategy that combines multiple models e.g. classifiers to improve predictions beyond what any single model can achieve. Until recently, traditional ensemble methods typically use only one layer of mod... Read More about Which classifiers are connected to others? An optimal connection framework for multi-layer ensemble systems..

A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture. (2024)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MCCALL, J., HAN, K. and LIEW, A.W.-C. 2024. A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2024), 30 June - 05 July 2024, Yokohama, Japan. Available from: https://doi.org/10.1109/CEC60901.2024.10611960

Deep neural networks (DNN) has achieved great successes across multiple domains. In recent years, a number of approaches have emerged on automatically finding the optimal DNN configurations. A technique among these approaches which show great promise... Read More about A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture..

VISTA: a variable length genetic algorithm and LSTM-based surrogate assisted ensemble selection algorithm in multiple layers ensemble system. (2024)
Presentation / Conference Contribution
HAN, K., NGUYEN, T.T., VU, V.A., LIEW, A.W.-C., DANG, T. and NGUYEN, T.T. 2024. VISTA: a variable length genetic algorithm and LSTM-based surrogate assisted ensemble selection algorithm in multiple layers ensemble system. In Proceedings of the 2024 IEEE (Institute of Electrical and Electronics Engineers) Congress on evolutionary computation (CEC 2024), 30 June - 05 July 2024, Yokohama, Japan. Piscataway: IEEE [online], article 10612029. Available from: https://doi.org/10.1109/CEC60901.2024.10612029

We proposed a novel ensemble selection method called VISTA for multiple layers ensemble systems (MLES). Our ensemble model consists of multiple layers of ensemble of classifiers (EoC) in which the EoC in each layer is trained on the data generated by... Read More about VISTA: a variable length genetic algorithm and LSTM-based surrogate assisted ensemble selection algorithm in multiple layers ensemble system..

Two-layer ensemble of deep learning models for medical image segmentation. (2024)
Journal Article
DANG, T., NGUYEN, T.T., MCCALL, J., ELYAN, E. and MORENO-GARCÍA, C.F. 2024. Two-layer ensemble of deep learning models for medical image segmentation. Cognitive computation [online], 16(3), pages 1141-1160. Available from: https://doi.org/10.1007/s12559-024-10257-5

One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated segmentation al... Read More about Two-layer ensemble of deep learning models for medical image segmentation..