Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. (2020)
Journal Article
PEGG, C., SURI, Y., ISLAM, S.Z., ASTHANA, A. and HOSSAIN, M. 2020. Computational fluid dynamics modelling to design and optimise power kites for renewable power generation. International journal of design engineering [online], 9(2): energy and sustainable futures, pages 81-100. Available from: https://doi.org/10.1504/IJDE.2020.113057

Power kites provide the potential rewards of obtaining the disused energy supply from high altitude wind. This paper aims to provide a design of power kite and optimise the potential for renewable power generation. The power kite was modelled using c... Read More about Computational fluid dynamics modelling to design and optimise power kites for renewable power generation..

Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. (2020)
Thesis
SURI, Y. 2020. Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://openair.rgu.ac.uk


The distribution of proppant injected in hydraulic fractures significantly affects fracture-conductivity and well-performance. The proppant transport and suspension in thin fracturing fluid used in unconventional reservoirs are considerably differe... Read More about Numerical simulation of fluid flow, proppant transport and fracture propagation in hydraulic fractures for unconventional reservoirs..

Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y. ISLAM, S.Z. and HOSSAIN, M. 2020. Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures. Journal of natural gas science and engineering [online], 80, article ID 103401. Available from: https://doi.org/10.1016/j.jngse.2020.103401

The effect of fracture roughness is investigated on proppant transport in hydraulic fractures using Joint Roughness Coefficient and a three-dimensional multiphase modelling approach. The equations governing the proppant transport physics in the fract... Read More about Effect of fracture roughness on the hydrodynamics of proppant transport in hydraulic fractures..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. International journal of rock mechanics and mining sciences [online], 131, article ID 104356. Available from: https://doi.org/10.1016/j.ijrmms.2020.104356

Numerically modelling the fluid flow with proppant transport and fracture propagation together are one of the significant technical challenges in hydraulic fracturing of unconventional hydrocarbon reservoirs. The existing models either model the prop... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach..

Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset] (2020)
Data
ISLAM, S., HOSSAIN, M. and SURI, Y. 2020. Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset]. Hosted on Mendeley Data [online]. Available from: https://doi.org/10.17632/sdzxzd9krm.1

The aim of this research was to find a dynamic and integrated numerical model that uses computational fluid dynamics (CFD) technique to model the fluid flow with proppant transport and Extended finite element method (XFEM) to model the fracture propa... Read More about Proppant transport in dynamically propagating hydraulic fractures using CFD-XFEM approach. [Dataset].

Numerical modelling of proppant transport in hydraulic fractures. (2020)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2020. Numerical modelling of proppant transport in hydraulic fractures. Fluid dynamics and materials processing [online], 16(2), pages 297-337. Available from: https://doi.org/10.32604/fdmp.2020.08421

The distribution of proppant injected in hydraulic fractures significantly affects the fracture conductivity and well performance. The proppant transport in thin fracturing fluid used during hydraulic fracturing in the unconventional reservoirs is co... Read More about Numerical modelling of proppant transport in hydraulic fractures..

Numerical fluid flow modelling in multiple fractured porous reservoirs. (2020)
Journal Article
SURI, Y., ISLAM, S.Z., STEPHEN, K., DONALD, C., THOMPSON, M., DROUBI, M.G. and HOSSAIN, M. 2020. Numerical fluid flow modelling in multiple fractured porous reservoirs. Fluid dynamics and materials processing [online], 16(2), pages 245-266. Available from: https://doi.org/10.32604/fdmp.2020.06505

This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity... Read More about Numerical fluid flow modelling in multiple fractured porous reservoirs..

A new CFD approach for proppant transport in unconventional hydraulic fractures. (2019)
Journal Article
SURI, Y., ISLAM, S.Z. and HOSSAIN, M. 2019. A new CFD approach for proppant transport in unconventional hydraulic fractures. Journal of natural gas science and engineering [online], 70, article number 102951. Available from: https://doi.org/10.1016/j.jngse.2019.102951

For hydraulic fracturing design in unconventional reservoirs, the existing proppant transport models ignore the fluid leak-off effect from the fracture side wall and the effect of fracture roughness. In this paper, a model is proposed using three-dim... Read More about A new CFD approach for proppant transport in unconventional hydraulic fractures..