Skip to main content

Research Repository

Advanced Search

Browse


Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. (2020)
Conference Proceeding
ZĂVOIANU, A.-C., LACROIX, B. and MCCALL, J. 2020. Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems. In Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M. and Trautmann, H. (eds.) Parallel problem solving from nature: PPSN XVI: proceedings of the 16th Parallel problem solving from nature international conference (PPSN 2020), 5-9 September 2020, Leiden, The Netherlands. Theoretical computer science and general issues, 12269. Cham; Springer, part 1, pages 287-300. Available from: https://doi.org/10.1007/978-3-030-58112-1_20

We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time converge... Read More about Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Conference Proceeding
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

Naive bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. (2020)
Journal Article
WICKRAMASINGHE, I. and KALUTARAGE, H. [2020]. Naive bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft computing [online], Online first. Available from: https://doi.org/10.1007/s00500-020-05297-6

Naïve Bayes (NB) is a well-known probabilistic classification algorithm. It is a simple but efficient algorithm with a wide variety of real-world applications, ranging from product recommendations through medical diagnosis to controlling autonomous v... Read More about Naive bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation..

Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: a mixed methods study. (2020)
Journal Article
NORDSTOGA, A.L., BACH, K., SANI, S., WIRATUNGA, N., MORK, P.J., VILLUMSEN, M. and COOPER, K. 2020. Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: a mixed methods study. JMIR Rehabilitation and assistive technologies [online], 7(2), article number e18729. Available from: https://doi.org/10.2196/18729

Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being... Read More about Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: a mixed methods study..

Personalised meta-learning for human activity recognition with few-data. (2020)
Conference Proceeding
WIJEKOON, A. and WIRATUNGA, N. [2020]. Personalised meta-learning for human activity recognition with few-data. To be presented at 40th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference 2020 (AI-2020), 8-9 December 2020, [virtual conference]. Lecture notes in artificial intelligence. Cham: Springer, (accepted).

State-of-the-art methods of Human Activity Recognition (HAR) rely on having access to a considerable amount of labelled data to train deep architectures with many train-able parameters. This becomes prohibitive when tasked with creating models that... Read More about Personalised meta-learning for human activity recognition with few-data..

Wifi-based human activity recognition using raspberry pi. (2020)
Conference Proceeding
FORBES, G., MASSIE, S. and CRAW, S. 2020. Wifi-based human activity recognition using raspberry pi. To be presented at 32nd International conference tools with artificial intelligence (ICTAI 2020), 9-11 November 2020, [virtual conference].

Ambient, non-intrusive approaches to smart home health monitoring, while limited in capability, are preferred by residents. More intrusive methods of sensing, such as video and wearables, can offer richer data but at the cost of lower resident uptake... Read More about Wifi-based human activity recognition using raspberry pi..

Decentralized combinatorial optimization. (2020)
Conference Proceeding
CHRISTIE, L.A. 2020. Decentralized combinatorial optimization. In Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M. and Trautmann, H. (eds.) Parallel problem solving from nature: PPSN XVI: proceedings of the 16th Parallel problem solving from nature international conference (PPSN 2020), 5-9 September 2020, Leiden, Netherlands. Theoretical computer science and general issues, 12269. Cham; Springer, pages 360-372. Available from: https://doi.org/10.1007/978-3-030-58112-1_25

Combinatorial optimization is a widely-studied class of computational problems with many theoretical and real-world applications. Optimization problems are typically tackled using hardware and software controlled by the user. Optimization can be comp... Read More about Decentralized combinatorial optimization..

The folklore-centric gaze: a relational approach to landscape, folklore and tourism. (2020)
Journal Article
IRONSIDE, R. and MASSIE, S. [2020]. The folklore-centric gaze: a relational approach to landscape, folklore and tourism. Time and mind [online], Latest Articles. Available from: https://doi.org/10.1080/1751696X.2020.1809862

Supernatural folktales have a long oral tradition in Scotland, embedded in local communities and the landscapes of the region. Recently, these folktales have been utilised by destinations as a form of place-making, and a driver for increasing tourist... Read More about The folklore-centric gaze: a relational approach to landscape, folklore and tourism..

Handling minority class problem in threats detection based on heterogeneous ensemble learning approach. (2020)
Journal Article
EKE, H., PETROVSKI, A. and AHRIZ, H. 2020. Handling minority class problem in threats detection based on heterogeneous ensemble learning approach. International journal of systems and software security and protection [online], 13(3), pages 13-37. Available from: https://doi.org/10.4018/IJSSSP.2020070102

Multiclass problem, such as detecting multi-steps behaviour of Advanced Persistent Threats (APTs) have been a major global challenge, due to their capability to navigates around defenses and to evade detection for a prolonged period of time. Targeted... Read More about Handling minority class problem in threats detection based on heterogeneous ensemble learning approach..

CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. (2020)
Journal Article
ELYAN, E., MORENO-GARCIA, C.F. and JAYNE, C. 2020. CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. Neural computing and applications [online], Online First. Available from: https://doi.org/10.1007/s00521-020-05130-z

Class-imbalanced datasets are common across several domains such as health, banking, security, and others. The dominance of majority class instances (negative class) often results in biased learning models, and therefore, classifying such datasets re... Read More about CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification..

Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease. (2020)
Journal Article
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease. International journal of neural systems [online], 30(8), article ID 2050043. Available from: https://doi.org/10.1142/S0129065720500434

Classification of imbalanced datasets has attracted substantial research interest over the past decades. Imbalanced datasets are common in several domains such as health, finance, security and others. A wide range of solutions to handle imbalanced da... Read More about Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease..

Evolved ensemble of detectors for gross error detection. (2020)
Conference Proceeding
NGUYEN, T.T., MCCALL, J., WILSON, A., OCHEI, L., CORBETT, H. and STOCKTON, P. 2020. Evolved ensemble of detectors for gross error detection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference companion (GECCO 2020), 8-12 July 2020, Cancun, Mexico. New York: ACM [online], pages 281-288. Available from: https://doi.org/10.1145/3377929.3389906

In this study, we evolve an ensemble of detectors to check the presence of gross systematic errors on measurement data. We use the Fisher method to combine the output of different detectors and then test the hypothesis about the presence of gross err... Read More about Evolved ensemble of detectors for gross error detection..

Does good ESG lead to better financial performances by firms? Machine learning and logistic regression models of public enterprises in Europe. (2020)
Journal Article
DE LUCIA, C., PAZIENZA, P. and BARTLETT, M. 2020. Does good ESG lead to better financial performances by firms? Machine learning and logistics regression models of public enterprises in Europe. Sustainability [online], 12(13), article ID 5317. Available from: https://doi.org/10.3390/su12135317

The increasing awareness of climate change and human capital issues is shifting companies towards aspects other than traditional financial earnings. In particular, the changing behaviors towards sustainability issues of the global community and the a... Read More about Does good ESG lead to better financial performances by firms? Machine learning and logistic regression models of public enterprises in Europe..

Automated anomaly recognition in real time data streams for oil and gas industry. (2020)
Thesis
MAJDANI SHABESTARI, F. 2020. Automated anomaly recognition in real time data streams for oil and gas industry. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

There is a growing demand for computer-assisted real-time anomaly detection - from the identification of suspicious activities in cyber security, to the monitoring of engineering data for various applications across the oil and gas, automotive and ot... Read More about Automated anomaly recognition in real time data streams for oil and gas industry..

ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. (2020)
Conference Proceeding
HAJAR, M.S., AL-KADRI, M.O. and KALUTARAGE, H. 2020. ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks. In Proceedings of 2020 Institute of Electrical and Electronics Engineers (IEEE) Communications and network security conference (CNS 2020), 29 June - 1 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9162325. Available from: https://doi.org/10.1109/CNS48642.2020.9162325

Wireless Medical Sensor Networks (WMSN) will play a significant role in the advancements of modern healthcare applications. Security concerns are still the main obstacle to the widespread adoption of this technology. Conventional security approaches,... Read More about ETAREE: an effective trend-aware reputation evaluation engine for wireless medical sensor networks..

Multi-layer heterogeneous ensemble with classifier and feature selection. (2020)
Conference Proceeding
NGUYEN, T.T., PHAM, N.V., DANG, M.T., LUONG, A.V., MCCALL, J. and LIEW, A. W.-C. 2020. Multi-layer heterogeneous ensemble with classifier and feature selection. In GECCO '20: proceedings of the Genetic and evolutionary computation conference (GECCO 2020), 8-12 July 2020, Cancun, Mexico. New York: ACM [online], pages 725-733. Available from: https://doi.org/10.1145/3377930.3389832

Deep Neural Networks have achieved many successes when applying to visual, text, and speech information in various domains. The crucial reasons behind these successes are the multi-layer architecture and the in-model feature transformation of deep le... Read More about Multi-layer heterogeneous ensemble with classifier and feature selection..

On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks. (2020)
Journal Article
LUGHOFER, E., ZAVOIANU, A.-C., POLLAK, R., PRATAMA, M., MEYER-HEYE, P., ZÖRRER, H., EITZINGER, C. and RADAUER, T. 2020. On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks. Information sciences [online], 537, 425-451. Available from: https://doi.org/10.1016/j.ins.2020.06.034

Anomaly detection in todays industrial environments is an ambitious challenge to detect possible faults/problems which may turn into severe waste during production, defects, or systems components damage, at an early stage. Data-driven anomaly detecti... Read More about On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks..

Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry. (2020)
Journal Article
VILELA, M., OLUYEMI, G. and PETROVSKI, A. 2020. Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry. International journal of applied decision sciences [online], 13(3), pages 344-362. Available from: https://doi.org/10.1504/IJADS.2020.10026404

Value of information is a widely accepted methodology for evaluating the need to acquire new data in the oil and gas industry. In the conventional approach to estimating the value of information, the outcomes of a project assessment relate to the dec... Read More about Sensitivity analysis applied to fuzzy inference on the value of information in the oil and gas industry..

The importance of embedding meta skills in computer science graduate apprenticeship programmes. (2020)
Conference Proceeding
YOUNG, T. 2020. The importance of embedding meta skills in computer science graduate apprenticeship programmes. In Proceedings of the 25th Association for Computing Machinery (ACM) Innovation and technology in computer science education conference 2020 (ITiCSE '20), 15-19 June 2020, Trondheim, Norway. New York: ACM [online], pages 589-590. Available from: https://doi.org/10.1145/3341525.3394010

The purpose of this proposal is to investigate the need for the increased focus on developing transferable and meta skills of Graduate Apprentice Computer Science students and how the advancements of technology can impact the need for this. The Fourt... Read More about The importance of embedding meta skills in computer science graduate apprenticeship programmes..

Through the lens: enhancing assessment with video-based presentation. (2020)
Conference Proceeding
ZARB, M. and BIRTLESKELMAN, J. 2020. Through the lens: enhancing assessment with video-based presentations. In Proceedings of the 25th Association for Computing Machinery (ACM) Innovation and technology in computer science education conference 2020 (ITiCSE '20), 15-19 June 2020, Trondheim, Norway. New York: ACM [online], pages 187-192. Available from: https://doi.org/10.1145/3341525.3387376

This paper discusses a video-based approach trialled within Robert Gordon University. Students are typically asked to formally deliver presentations (either individually, or in groups) for summative assessment. Timetabling issues, large student numbe... Read More about Through the lens: enhancing assessment with video-based presentation..


;