Skip to main content

Research Repository

Advanced Search

All Outputs (7)

A dominance-based surrogate classifier for multi-objective evolutionary algorithms. (2024)
Presentation / Conference Contribution
BANDA, T.M. and ZĂVOIANU, A.-C. 2025. A dominance-based surrogate classifier for multi-objective evolutionary algorithms. In Bramer, M. and Stahl, F. (eds.) Artificial Intelligence XLI: proceedings of the 44th SGAI (Specialist Group on Artificial Intelligence) International conference on artificial intelligence 2024 (AI 2024), 17-19 December 2024, Cambridge, UK. Lecture notes in computer science, 15446. Cham: Springer [online], part I, pages 268-281. Available from: https://doi.org/10.1007/978-3-031-77915-2_19

The application of Multi-Objective Evolutionary Algorithms (MOEAs) is often constrained when addressing computationally expensive Multi-Objective Optimisation Problems (MOOPs). To mitigate this, we propose a dominance-based surrogate classifier that... Read More about A dominance-based surrogate classifier for multi-objective evolutionary algorithms..

Explaining a staff rostering problem using partial solutions. (2024)
Presentation / Conference Contribution
CATALANO, G.A.P.I., BROWNLEE, A.E.I., CAIRNS, D., MCCALL, J.A.W., FYVIE, M. and AINSLIE, R. 2025. Explaining a staff rostering problem using partial solutions. In Bramer, M. and Stahl, F. (eds) Artificial intelligence XLI: proceedings of the 44th SGAI (Specialist Group on Artificial Intelligence) International conference on artificial intelligence 2024 (AI 2024), 17-19 December 2024, Cambridge, UK. Lecture notes in computer science, 15447. Cham: Springer [online], part II, pages 179-193. Available from: https://doi.org/10.1007/978-3-031-77918-3_13

There are many critical optimisation tasks that metaheuristic approaches have been shown to be able to solve effectively. Despite promising results, users might not trust these algorithms due to their intrinsic lack of interpretability. This paper de... Read More about Explaining a staff rostering problem using partial solutions..

Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement. (2023)
Presentation / Conference Contribution
COLLINS, J., ZĂVOIANU, A.-C. and MCCALL, J.A.W. 2023. Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI (Specialist Group on Artificial Intelligence) Artificial intelligence international conference 2023 (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 451-464. Available from: https://doi.org/10.1007/978-3-031-47994-6_39

Rosters are often used for real-world staff scheduling requirements. Multiple design factors such as demand variability, shift type placement, annual leave requirements, staff well-being and the placement of trainees need to be considered when constr... Read More about Comparison of simulated annealing and evolution strategies for optimising cyclical rosters with uneven demand and flexible trainee placement..

Explaining a staff rostering problem by mining trajectory variance structures. (2023)
Presentation / Conference Contribution
FYVIE, M., MCCALL, J.A.W., CHRISTIE, L.A., ZĂVOIANU, A.-C., BROWNLEE, A.E.I. and AINSLIE, R. 2023. Explaining a staff rostering problem by mining trajectory variance structures. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI international conference on artificial intelligence (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 275-290. Available from: https://doi.org/10.1007/978-3-031-47994-6_27

The use of Artificial Intelligence-driven solutions in domains involving end-user interaction and cooperation has been continually growing. This has also lead to an increasing need to communicate crucial information to end-users about algorithm behav... Read More about Explaining a staff rostering problem by mining trajectory variance structures..

Clinical dialogue transcription error correction with self-supervision. (2023)
Presentation / Conference Contribution
NANAYAKKARA, G., WIRATUNGA, N., CORSAR, D., MARTIN, K. and WIJEKOON, A. 2023. Clinical dialogue transcription error correction with self-supervision. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI international conference on artificial intelligence (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 33-46. Available from: https://doi.org/10.1007/978-3-031-47994-6_3

A clinical dialogue is a conversation between a clinician and a patient to share medical information, which is critical in clinical decision-making. The reliance on manual note-taking is highly inefficient and leads to transcription errors when digit... Read More about Clinical dialogue transcription error correction with self-supervision..

Job assignment problem and traveling salesman problem: a linked optimisation problem. (2022)
Presentation / Conference Contribution
OGUNSEMI, A., MCCALL, J., KERN, M., LACROIX, B., CORSAR, D. and OWUSU, G. 2022. Job assignment problem and traveling salesman problem: a linked optimisation problem. In Bramer, M. and Stahl, F (eds.) Artificial intelligence XXXIX: proceedings of the 42nd SGAI (Specialist Group on Artificial Intelligence) Artificial intelligence international conference 2022 (AI 2022), 13-15 December 2022, Cambridge, UK. Lecture notes in computer science (LNCS), 13652. Cham: Springer [online], pages 19-33. Available from: https://doi.org/10.1007/978-3-031-21441-7_2

Linked decision-making in service management systems has attracted strong adoption of optimisation algorithms. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems. This paper, theref... Read More about Job assignment problem and traveling salesman problem: a linked optimisation problem..

An association rule dynamics and classification approach to event detection and tracking in Twitter. (2015)
Thesis
ADEDOYIN-OLOWE, M. 2015. An association rule dynamics and classification approach to event detection and tracking in Twitter. Robert Gordon University, PhD thesis.

Twitter is a microblogging application used for sending and retrieving instant on-line messages of not more than 140 characters. There has been a surge in Twitter activities since its launch in 2006 as well as steady increase in event detection resea... Read More about An association rule dynamics and classification approach to event detection and tracking in Twitter..