Skip to main content

Research Repository

Advanced Search

Dr Martin Fyvie's Outputs (3)

Explaining a staff rostering problem by mining trajectory variance structures. (2023)
Presentation / Conference Contribution
FYVIE, M., MCCALL, J.A.W., CHRISTIE, L.A., ZĂVOIANU, A.-C., BROWNLEE, A.E.I. and AINSLIE, R. 2023. Explaining a staff rostering problem by mining trajectory variance structures. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI international conference on artificial intelligence (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 275-290. Available from: https://doi.org/10.1007/978-3-031-47994-6_27

The use of Artificial Intelligence-driven solutions in domains involving end-user interaction and cooperation has been continually growing. This has also lead to an increasing need to communicate crucial information to end-users about algorithm behav... Read More about Explaining a staff rostering problem by mining trajectory variance structures..

Towards explainable metaheuristics: feature extraction from trajectory mining. (2023)
Journal Article
FYVIE, M., MCCALL, J.A.W., CHRISTIE, L.A., BROWNLEE, A.E.I. and SINGH, M. 2025. Towards explainable metaheuristics: feature extraction from trajectory mining. Expert systems [online], 42(1), article number e13494. Available from: https://doi.org/10.1111/exsy.13494

Explaining the decisions made by population-based metaheuristics can often be considered difficult due to the stochastic nature of the mechanisms employed by these optimisation methods. As industries continue to adopt these methods in areas that incr... Read More about Towards explainable metaheuristics: feature extraction from trajectory mining..

Explaining a staff rostering genetic algorithm using sensitivity analysis and trajectory analysis. (2023)
Presentation / Conference Contribution
FYVIE, M., MCCALL, J.A.W., CHRISTIE, L.A. and BROWNLEE, A.E.I. 2023. Explaining a staff rostering genetic algorithm using sensitivity analysis and trajectory analysis. In GECCO’23 companion: proceedings of the 2023 Genetic and evolutionary computation conference companion, 15-19 July 2023, Lisbon, Portugal. New York: ACM [online], pages 1648-1656. Available from: https://doi.org/10.1145/3583133.3596353

In the field of Explainable AI, population-based search metaheuristics are of growing interest as they become more widely used in critical applications. The ability to relate key information regarding algorithm behaviour and drivers of solution quali... Read More about Explaining a staff rostering genetic algorithm using sensitivity analysis and trajectory analysis..