Skip to main content

Research Repository

Advanced Search

Dr Martin Fyvie's Outputs (3)

Explaining a staff rostering problem using partial solutions. (2024)
Presentation / Conference Contribution
CATALANO, G.A.P.I., BROWNLEE, A.E.I., CAIRNS, D., MCCALL, J.A.W., FYVIE, M. and AINSLIE, R. 2025. Explaining a staff rostering problem using partial solutions. In Bramer, M. and Stahl, F. (eds) Artificial intelligence XLI: proceedings of the 44th SGAI (Specialist Group on Artificial Intelligence) International conference on artificial intelligence 2024 (AI 2024), 17-19 December 2024, Cambridge, UK. Lecture notes in computer science, 15447. Cham: Springer [online], part II, pages 179-193. Available from: https://doi.org/10.1007/978-3-031-77918-3_13

There are many critical optimisation tasks that metaheuristic approaches have been shown to be able to solve effectively. Despite promising results, users might not trust these algorithms due to their intrinsic lack of interpretability. This paper de... Read More about Explaining a staff rostering problem using partial solutions..

Evolutionary computation and explainable AI: a roadmap to understandable intelligent systems. (2024)
Journal Article
ZHOU, R., BACARDIT, J., BROWNLEE, A.E.I., CAGNONI, S., FYVIE, M., IACCA, G., MCCALL, J., VAN STEIN, N., WALKER, D.J. and HU, T. [2024]. Evolutionary computation and explainable AI: a roadmap to understandable intelligent systems. IEEE Transactions on evolutionary computation [online], Early Access. Available from: https://doi.org/10.1109/TEVC.2024.3476443

Artificial intelligence methods are being increasingly applied across various domains, but their often opaque nature has raised concerns about accountability and trust. In response, the field of explainable AI (XAI) has emerged to address the need fo... Read More about Evolutionary computation and explainable AI: a roadmap to understandable intelligent systems..

Explainability of non-deterministic solvers: explanatory feature generation from the data mining of the search trajectories of population-based metaheuristics. (2024)
Thesis
FYVIE, M. 2024. Explainability of non-deterministic solvers: explanatory feature generation from the data mining of the search trajectories of population-based metaheuristics. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-2565263

Evolutionary algorithms (EAs) are the principal focus of research study in Evolutionary Computing (EC). In EC, naturally occurring processes designed to drive success in nature are simulated for a similar purpose in numerical optimisation. Such proce... Read More about Explainability of non-deterministic solvers: explanatory feature generation from the data mining of the search trajectories of population-based metaheuristics..