Skip to main content

Research Repository

Advanced Search

LAURA JAMIESON's Outputs (2)

A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams. (2024)
Presentation / Conference Contribution
JAMIESON, L., MORENO-GARCÍA, C.F. and ELYAN, E. 2024. A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams. In Barney Smith, E.H., Liwicki, M. and Peng, L. (eds.) Proceedings of the 18th International conference on Document analysis and recognition 2024 (ICDAR 2024), 30 August - 4 September 2024, Athens, Greece. Lecture notes in computer science, 14804. Cham: Springer [online], part 1, pages 3-16. Available from: https://doi.org/10.1007/978-3-031-70533-5_1

Engineering diagrams provide rich source of information and are widely used across different industries. Recent years have seen growing research interest in developing solutions for processing and analysing these diagrams using wide range of image-pr... Read More about A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams..

Deep learning for text detection and recognition in complex engineering diagrams. (2020)
Presentation / Conference Contribution
JAMIESON, L, MORENO-GARCIA, C.F. and ELYAN, E. 2020. Deep learning for text detection and recognition in complex engineering diagrams. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207127. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207127

Engineering drawings such as Piping and Instrumentation Diagrams contain a vast amount of text data which is essential to identify shapes, pipeline activities, tags, amongst others. These diagrams are often stored in undigitised format, such as paper... Read More about Deep learning for text detection and recognition in complex engineering diagrams..