Skip to main content

Research Repository

Advanced Search

DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. (2021)
Conference Proceeding
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. To be presented at 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, [virtual conference].

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..

Counterfactual explanations for student outcome prediction with Moodle footprints. (2021)
Conference Proceeding
WIJEKOON, A., WIRATUNGA, N., NKILSI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. Counterfactual explanations for student outcome prediction with Moodle footprints. In Martin, K., Wiratunga, N. and Wijekoon, A. (eds.) SICSA XAI workshop 2021: proceedings of 2021 SICSA (Scottish Informatics and Computer Science Alliance) eXplainable artificial intelligence workshop (SICSA XAI 2021), 1st June 2021, [virtual conference]. CEUR workshop proceedings, 2894. Aachen: CEUR-WS [online], session 1, pages 1-8. Available from: http://ceur-ws.org/Vol-2894/short1.pdf

Counterfactual explanations focus on “actionable knowledge” to help end-users understand how a machine learning outcome could be changed to one that is more desirable. For this purpose a counterfactual explainer needs to be able to reason with simila... Read More about Counterfactual explanations for student outcome prediction with Moodle footprints..

Evaluating explainability methods intended for multiple stakeholders. (2021)
Journal Article
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. [2021]. Evaluating explainability methods intended for multiple stakeholders. KI - Künstliche Intelligenz [online], Online First. Available from: https://doi.org/10.1007/s13218-020-00702-6

Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanat... Read More about Evaluating explainability methods intended for multiple stakeholders..

Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. (2020)
Conference Proceeding
MORENO-GARCÍA, C.F., DANG, T., MARTIN, K., PATEL, M., THOMPSON, A., LEISHMAN, L. and WIRATUNGA, N. 2020. Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection. In Bach, K., Bunescu, R., Marling, C. and Wiratunga, N. (eds.) Knowledge discovery in healthcare data 2020: proceedings of the 5th Knowledge discovery in healthcare data international workshop 2020 (KDH 2020), co-located with 24th European Artificial intelligence conference (ECAI 2020), 29-30 August 2020, [virtual conference]. CEUR workshop proceedings, 2675. Aachen: CEUR-WS [online], pages 63-70. Available from: http://ceur-ws.org/Vol-2675/paper10.pdf

Fracture detection has been a long-standingparadigm on the medical imaging community. Many algo-rithms and systems have been presented to accurately detectand classify images in terms of the presence and absence offractures in different parts of the... Read More about Assessing the clinicians’ pathway to embed artificial intelligence for assisted diagnostics of fracture detection..

Locality sensitive batch selection for triplet networks. (2020)
Conference Proceeding
MARTIN, K., WIRATUNGA, N. and SANI, S. 2020. Locality sensitive batch selection for triplet networks. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207538. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207538

Triplet networks are deep metric learners which learn to optimise a feature space using similarity knowledge gained from training on triplets of data simultaneously. The architecture relies on the triplet loss function to optimise its weights based u... Read More about Locality sensitive batch selection for triplet networks..

Preface: case-based reasoning and deep learning. (2020)
Conference Proceeding
MARTIN, K., KAPETANAKIS, S., WIJEKOON, A., AMIN, K. and MASSIE, S. 2019. Preface: case-based reasoning and deep learning. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of the 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR Workshop proceedings, 2567. Aachen: CEUR-WS [online], pages 6-7. Available from: http://ceur-ws.org/Vol-2567/cbr_dl_preface.pdf

Recent advances in deep learning (DL) have helped to usher in a new wave of confidence in the capability of artificial intelligence. Increasingly, we are seeing DL architectures out perform long established state-of-the-art algorithms in a numb... Read More about Preface: case-based reasoning and deep learning..

Human activity recognition with deep metric learners. (2020)
Conference Proceeding
MARTIN, K., WIJEKOON, A. and WIRATUNGA, N. 2019. Human activity recognition with deep metric learners. In Kapetanakis, S. and Borck, H. (eds.) Proceedings of 27th International conference on case-based reasoning workshop (ICCBR-WS19), co-located with the 27th International conference on case-based reasoning (ICCBR19), 8-12 September 2019, Otzenhausen, Germany. CEUR Workshop Proceedings, 2567. Aachen: CEUR-WS [online], pages 8-17. Available from: http://ceur-ws.org/Vol-2567/paper1.pdf

Establishing a strong foundation for similarity-based return is a top priority in Case-Based Reasoning (CBR) systems. Deep Metric Learners (DMLs) are a group of neural network architectures which learn to optimise case representations for similarity-... Read More about Human activity recognition with deep metric learners..

Developing a catalogue of explainability methods to support expert and non-expert users. (2019)
Conference Proceeding
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2019. Developing a catalogue of explainability methods to support expert and non-expert users. In Bramer, M. and Petridis, M. (eds.) Artificial intelligence XXXVI: proceedings of the 39th British Computer Society's Specialist Group on Artificial Intelligence (SGAI) international Artificial intelligence conference 2019 (AI 2019), 17-19 December 2019, Cambridge, UK. Lecture notes in computer science, 11927. Cham: Springer [online], pages 309-324. Available from: https://doi.org/10.1007/978-3-030-34885-4_24

Organisations face growing legal requirements and ethical responsibilities to ensure that decisions made by their intelligent systems are explainable. However, provisioning of an explanation is often application dependent, causing an extended design... Read More about Developing a catalogue of explainability methods to support expert and non-expert users..