Skip to main content

Research Repository

Advanced Search

Outputs (2)

Efficient breast cancer classification network with dual squeeze and excitation in histopathological images. (2022)
Journal Article
SARKER, M.M.K., AKRAM, F., ALSHARID, M., SINGH, V.K., YASRAB, R. and ELYAN, E. 2023. Efficient breast cancer classification network with dual squeeze and excitation in histopathological images. Diagnostics [online], 13(1), article 103. Available from: https://doi.org/10.3390/diagnostics13010103

Medical image analysis methods for mammograms, ultrasound, and magnetic resonance imaging (MRI) cannot provide the underline features on the cellular level to understand the cancer microenvironment which makes them unsuitable for breast cancer subtyp... Read More about Efficient breast cancer classification network with dual squeeze and excitation in histopathological images..

ICOSeg: real-time ICOS protein expression segmentation from immunohistochemistry slides using a lightweight conv-transformer network. (2022)
Journal Article
SINGH, V.K., SARKER, M.M.K., MAKHLOUF, Y., CRAIG, S.G., HUMPHRIES, M.P., LOUGHREY, M.B., JAMES, J.A., SALTO-TELLEZ, M., O'REILLY, P. and MAXWELL, P. 2022. ICOSeg: real-time ICOS protein expression segmentation from immunohistochemistry slides using a lightweight conv-transformer network. Cancers [online], 14(16), article 3910. Available from: https://doi.org/10.3390/cancers14163910

In this article, we propose ICOSeg, a lightweight deep learning model that accurately segments the immune-checkpoint biomarker, Inducible T-cell COStimulator (ICOS) protein in colon cancer from immunohistochemistry (IHC) slide patches. The proposed m... Read More about ICOSeg: real-time ICOS protein expression segmentation from immunohistochemistry slides using a lightweight conv-transformer network..