Skip to main content

Research Repository

Advanced Search

Outputs (6)

Contour extraction of medical images using an attention-based network. (2023)
Journal Article
LV, J.J., CHEN, H.Y., LI, J.W., LIN, K.H., CHEN, R.J., WANG, L.J., ZENG, X.X., REN, J.C. and ZHAO, H.M. 2023. Contour extraction of medical images using an attention-based network. Biomedical signal processing and control [online], 84, article 104828. Available from: https://doi.org/10.1016/j.bspc.2023.104828

A comprehensive analysis of medical images is important, as it assists in early screening and clinical treatment as well as subsequent rehabilitation. In general, the contour information can elaborately describe the shape and size of lesions in a med... Read More about Contour extraction of medical images using an attention-based network..

TransSLC: skin lesion classification in dermatoscopic images using transformers. (2022)
Presentation / Conference Contribution
SARKER, M.M.K., MORENO-GARCÍA, C.F., REN, J. and ELYAN, E. 2022. TransSLC: skin lesion classification in dermatoscopic images using transformers. In Yang, G., Aviles-Rivero, A., Roberts, M. and Schönlieb, C.-B. (eds.) Medical image understanding and analysis: proceedings of 26th Medical image understanding and analysis 2022 (MIUA 2022), 27-29 July 2022, Cambridge, UK. Lecture notes in computer sciences, 13413. Cham: Springer [online], pages 651-660. Available from: https://doi.org/10.1007/978-3-031-12053-4_48

Early diagnosis and treatment of skin cancer can reduce patients' fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and rec... Read More about TransSLC: skin lesion classification in dermatoscopic images using transformers..

Effective extraction of ventricles and myocardium objects from cardiac magnetic resonance images with a multi-task learning U-net. (2021)
Journal Article
REN, J., SUN, H., ZHAO, H., GAO, H., MACLELLAN, C., ZHAO, S. and LUO, X. 2022. Effective extraction of ventricles and myocardium objects from cardiac magnetic resonance images with a multi-task learning U-net. Pattern recognition letters [online], 155, pages 165-170. Available from: https://doi.org/10.1016/j.patrec.2021.10.025

Accurate extraction of semantic objects such as ventricles and myocardium from magnetic resonance (MR) images is one essential but very challenging task for the diagnosis of the cardiac diseases. To tackle this problem, in this paper, an automatic en... Read More about Effective extraction of ventricles and myocardium objects from cardiac magnetic resonance images with a multi-task learning U-net..

A novel multi-stage residual feature fusion network for detection of COVID-19 in chest X-ray images. (2021)
Journal Article
FANG, Z., REN, J., MACLELLAN, C., LI, H., ZHOA, H., HUSSAIN, A. and FORTINO, G. 2022. A novel multi-stage residual feature fusion network for detection of COVID-19 in chest X-ray images. IEEE transactions on molecular, biological and multi-scale communications [online], 8(1), pages 17-27. Available from: https://doi.org/10.1109/tmbmc.2021.3099367

To suppress the spread of COVID-19, accurate diagnosis at an early stage is crucial, chest screening with radiography imaging plays an important role in addition to the real-time reverse transcriptase polymerase chain reaction (RT-PCR) swab test. Due... Read More about A novel multi-stage residual feature fusion network for detection of COVID-19 in chest X-ray images..

Effective melanoma recognition using deep convolutional neural network with covariance discriminant loss. (2020)
Journal Article
GUO, L., XIE, G., XU, X. and REN, J. 2020. Effective melanoma recognition using deep convolutional neural network with covariance discriminant loss. Sensors [online], 20(20), article 5786. Available from: https://doi.org/10.3390/s20205786

Melanoma recognition is challenging due to data imbalance and high intra-class variations and large inter-class similarity. Aiming at the issues, we propose a melanoma recognition method using deep convolutional neural network with covariance discrim... Read More about Effective melanoma recognition using deep convolutional neural network with covariance discriminant loss..

A novel intelligent computational approach to model epidemiological trends and assess the impact of non-pharmacological interventions for COVID-19. (2020)
Journal Article
REN, J., YAN, Y., ZHAO, H., MA, P., ZABALZA, J., HUSSAIN, Z., LUO, S., DAI, Q., ZHAO, S., SHEIKH, A., HUSSAIN, A. and LI, H. 2020. A novel intelligent computational approach to model epidemiological trends and assess the impact of non-pharmacological interventions for COVID-19. IEEE Journal of biomedical and health informatics [online], 24(12), pages 3551-3563. Available from: https://doi.org/10.1109/jbhi.2020.3027987

The novel coronavirus disease 2019 (COVID-19) pandemic has led to a worldwide crisis in public health. It is crucial we understand the epidemiological trends and impact of non-pharmacological interventions (NPIs), such as lockdowns for effective mana... Read More about A novel intelligent computational approach to model epidemiological trends and assess the impact of non-pharmacological interventions for COVID-19..