DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods.
(2021)
Presentation / Conference Contribution
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. In Proceedings of 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, Washington, USA [virtual conference]. Piscataway: IEEE [online], pages 1466-1473. Available from: https://doi.org/10.1109/ICTAI52525.2021.00233
Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..