Zhenyu Fang
Topological optimization of the DenseNet with pretrained-weights inheritance and genetic channel selection.
Fang, Zhenyu; Ren, Jinchang; Marshall, Stephen; Zhao, Huimin; Wang, Song; Li, Xuelong
Authors
Professor Jinchang Ren j.ren@rgu.ac.uk
Professor of Computing Science
Stephen Marshall
Huimin Zhao
Song Wang
Xuelong Li
Abstract
Convolutional neural networks (CNNs) have been successfully applied in many computer vision applications, especially in image classification tasks, where most of the structures have been designed manually. With the aid of skip connection and dense connection, the depths of the models are becoming 'deeper' and the filters of layers are getting 'wider' in order to tackle the challenge of large-scale datasets. However, large-scale models in convolutional layers become inefficient due to the redundant channels from input feature maps. In this paper, we aim to automatically optimize the topology of the DenseNet, in which unnecessary convolutional kernels are reduced. To achieve this, we present a training pipeline that generates the network structure using a genetic algorithm. We first propose two encoding methods that can represent the structure of the model using a fixed-length binary string. A three-step based evolutionary process consisting of selection, crossover, and mutation is proposed to optimize the structure. We also present a pretrained weight inheritance method which can largely reduce the total time consumption of the genetic process. Experimental results have demonstrated that our proposed model can achieve comparable accuracy to the state-of-the-art models, across a wide range of image recognition and classification datasets, whilst significantly reducing the number of parameters.
Citation
FANG, Z, REN, J., MARSHALL, S., ZHAO, H., WANG, S. and LI, X. 2021. Topological optimization of the DenseNet with pretrained-weights inheritance and genetic channel selection. Pattern recognition [online], 109, article ID 107608. Available from: https://doi.org/10.1016/j.patcog.2020.107608
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 19, 2020 |
Online Publication Date | Aug 22, 2020 |
Publication Date | Jan 31, 2021 |
Deposit Date | Feb 22, 2021 |
Publicly Available Date | Aug 23, 2021 |
Journal | Pattern recognition |
Print ISSN | 0031-3203 |
Electronic ISSN | 1873-5142 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 109 |
Article Number | 107608 |
DOI | https://doi.org/10.1016/j.patcog.2020.107608 |
Keywords | Deep convolutional neural networks; Genetic algorithms; Parameter reduction; Structure optimization; DenseNet |
Public URL | https://rgu-repository.worktribe.com/output/1084791 |
Files
FANG 2021 Topological optimization
(5.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Two-click based fast small object annotation in remote sensing images.
(2024)
Journal Article
Prompting-to-distill semantic knowledge for few-shot learning.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search