Shunli Wang
A critical review of online battery remaining useful lifetime prediction methods.
Wang, Shunli; Jin, Siyu; Deng, Dan; Fernandez, Carlos
Abstract
Lithium-ion batteries play an important role in our daily lives. The prediction of the remaining service life of lithium-ion batteries has become an important issue. This article reviews the methods for predicting the remaining service life of lithium-ion batteries from three aspects: machine learning, adaptive filtering, and random processes. The purpose of this study is to review, classify and compare different methods proposed in the literature to predict the remaining service life of lithium-ion batteries. This article first summarizes and classifies various methods for predicting the remaining service life of lithium-ion batteries that have been proposed in recent years. On this basis, by selecting specific criteria to evaluate and compare the accuracy of different models, find the most suitable method. Finally, summarize the development of various methods. According to the research in this article, the average accuracy of machine learning is 32.02% higher than the average of the other two methods, and the prediction cycle is 9.87% shorter than the average of the other two methods.
Citation
WANG, S., JIN, S., DENG, D. and FERNANDEZ, C. 2021. A critical review of online battery remaining useful lifetime prediction methods. Frontiers in mechanical engineering [online], 7, article 719718. Available from: https://doi.org/10.3389/fmech.2021.719718
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 16, 2021 |
Online Publication Date | Aug 3, 2021 |
Publication Date | Dec 31, 2021 |
Deposit Date | Aug 27, 2021 |
Publicly Available Date | Aug 27, 2021 |
Journal | Frontiers in Mechanical Engineering |
Electronic ISSN | 2297-3079 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 7 |
Article Number | 719718 |
DOI | https://doi.org/10.3389/fmech.2021.719718 |
Keywords | Lithium-ion batteries; Remaining useful lifetime; Machine learning; Adaptive filtering; Stochastic process methods |
Public URL | https://rgu-repository.worktribe.com/output/1428388 |
Files
WANG 2021 A critical review
(1.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Copyright Statement
Copyright © 2021 Wang, Jin, Deng and Fernandez.
You might also like
Spectrophotometric and chromatographic analysis of creatine: creatinine crystals in urine.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search