Emrah Dokur
Offshore wind speed short-term forecasting based on a hybrid method: swarm decomposition and meta-extreme learning machine.
Dokur, Emrah; Erdogan, Nuh; Salari, Mahdi Ebrahimi; Karakuzu, Cihan; Murphy, Jimmy
Authors
Nuh Erdogan
Mahdi Ebrahimi Salari
Cihan Karakuzu
Jimmy Murphy
Abstract
As the share of global offshore wind energy in the electricity generation portfolio is rapidly increasing, the grid integration of large-scale offshore wind farms is becoming of interest. Due to the intermittency of wind, the stability of power systems is challenging. Therefore, accurate and fast offshore short-term wind speed forecasting tools play important role in maintaining reliability and safe operation of the power system. This paper proposes a novel hybrid offshore wind forecasting model based on swarm decomposition (SWD) and meta-extreme learning machine (Meta-ELM). This approach combines the advantages of SWD which has proven efficiency for non-stationary signals, with Meta-ELM which provides faster calculation with a lower computational burden. In order to enhance accuracy and stability, the signal is decomposed by implementing a swarm-prey hunting algorithm in SWD. To validate the model, a comparison against four conventional and state-of-the-art hybrid models is performed. The implemented models are tested on two real wind datasets. The results demonstrate that the proposed model outperforms the counterparts for all performance metrics considered. The proposed hybrid approach can also improve the performance of the Meta-ELM model as a well-known and robust method.
Citation
DOKUR, E., ERDOGAN, N., SALARI, M.E., KARAKUZU, C. and MURPHY, J. 2022. Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine. Energy [online], 248, article 123595. Available from: https://doi.org/10.1016/j.energy.2022.123595
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 24, 2022 |
Online Publication Date | Mar 3, 2022 |
Publication Date | Jun 1, 2022 |
Deposit Date | Mar 4, 2022 |
Publicly Available Date | Mar 4, 2022 |
Journal | Energy |
Print ISSN | 0360-5442 |
Electronic ISSN | 1873-6785 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 248 |
Article Number | 123595 |
DOI | https://doi.org/10.1016/j.energy.2022.123595 |
Keywords | Offshore wind energy; Wind speed forecasting; Swarm decomposition; Meta extreme learning machine |
Public URL | https://rgu-repository.worktribe.com/output/1609123 |
Files
DOKUR 2022 Offshore wind speed (VOR)
(3.1 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2022 The Authors. Published by Elsevier Ltd.
You might also like
A new rough ordinal priority-based decision support system for purchasing electric vehicles.
(2023)
Journal Article
A rough Dombi Bonferroni based approach for public charging station type selection.
(2023)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search