O. Abunumah
Experimental determination of carbon capture and sequestration response to reservoir quantities.
Abunumah, O.; Ogunlude, P.; Gobina, E.; Giwa, Ayo
Authors
P. Ogunlude
E. Gobina
Ayo Giwa
Abstract
Reservoir entities can be classified into geological, geometrical and fluidic. To complicate matters, reservoirs are usually set in geological layers, such that each layer interacts with injected and resident fluids differently. Carbon dioxide (CO2) is one of the fluids injected in reservoirs. This injection process achieves both economic and environmental benefits. On the one hand, the CO2 injection increases oil production in a process called CO2 Enhanced Oil Recovery (CO2 EOR). On the other hand, it engenders the storage of CO2 in subsurface geological sites to reduce greenhouse gas and mitigate global warming in a process called Carbon Capture and Sequestration (CCS). Consequently, CO2 injection has to effectively couple with these reservoirs entities individually and collectively to achieve CO2 EOR and sequestration optimisations. Other investigators have not properly documented the CO2 sequestration optimisation subject area in light of its response to reservoirs entities. Hence the purpose of this study is to offer information on this area. Rigorous data mining and experimental methods have been applied to characterise and determine CCS response to the petrophysical quantities of reservoirs. The data mining analysis phase indicate that reservoirs’ suitability to CO2 EOR application can be characterised by reservoir petrophysical quantities, such as permeability, porosity, oil viscosity and API gravity. In the experimental phase, five analogous core samples with varying structural quantities were used. The empirical analysis investigated the response of CCS to 20 reservoir quantities. Reservoirs are natural replicas of industrial materials such as nano, ceramics and silicate materials. Although reservoirs are made of sedimentations of sandstones, shale and carbonate, they however, significantly share similar physical property characteristics with the aforementioned industry material. The characterisation of reservoir rock pores size includes nanopores in shale and microspores in sandstone rocks. Similarly, authors characterisation of permeability in reservoir rocks is similar to that of industrial materials such as ceramic membranes. Consequently, these materials can be aptly used to study the carbon capture and sequestration CCS in reservoir rock to a significant degree of accuracy. The series of graphs generated in the course of the investigation show that the relationship between CCS and the petrophysical quantities ranges from linear to higher-order polynomial. The results demonstrated that CCS directly responds to pore size and gas density. CSS inversely responds to the aspect ratio, pore density, specific surface area, and displacement pressure. Furthermore, CCS is found to be responsive to porosity, tortuosity and permeability in the third-order polynomial. The research outcome provides a deeper understanding of CCS optimisation in structurally complicated multilayer reservoirs. The result also provides utility in investigating CCS response to the variability encountered in reservoir systems.
Citation
ABUNUMAH, O., OGUNLUDE, P., GOBINA, E. and GIWA, A. 2022. Experimental determination of carbon sequestration response to reservoir quantities. In Techconnect briefs 2022: papers from 2022 TechConnect world innovation conference and expo, 13-15 June 2022, Washington, USA. Danville: TechConnect [online], pages 47-50. Available from: https://briefs.techconnect.org/wp-content/volumes/TCB2022/pdf/423.pdf
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 2022 TechConnect world innovation conference and expo |
Start Date | Jun 13, 2022 |
End Date | Jun 15, 2022 |
Acceptance Date | Apr 22, 2022 |
Online Publication Date | Jun 13, 2022 |
Publication Date | Dec 31, 2022 |
Deposit Date | Jun 23, 2022 |
Publicly Available Date | Jun 23, 2022 |
Publisher | TechConnect |
Peer Reviewed | Peer Reviewed |
Volume | 2022 |
Pages | 47-50 |
Book Title | TechConnect Briefs 2022 |
ISBN | 9798218002381 |
Keywords | Carbon capture; CCUS; Permeability; Porosity; Pore size; Geology |
Public URL | https://rgu-repository.worktribe.com/output/1695212 |
Publisher URL | https://briefs.techconnect.org/papers/experimental-determination-of-carbon-capture-and-sequestration-response-to-reservoir-quantities/ |
Files
ABUNUMAH 2022 Experimental determination of carbon (VOR)
(1.4 Mb)
PDF
Copyright Statement
© 2022 TechConnect http://techconnect.org. Reprinted and revised, with permission, from the TechConnect Briefs 2022, pp. 47-50, 13-15 June 2022, Washington, U.S.A.
You might also like
A study of gas diffusion characteristics on nano-structured ceramic membranes.
(2022)
Journal Article
Nanoporous gas transport in shale gas reservoirs.
(2022)
Journal Article
Effect of reservoir structural rhythm on carbon capture and sequestration (CCS) performance.
(2022)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search