Yifei Zhou
Remaining useful life prediction and state of health diagnosis of lithium-ion batteries with multiscale health features based on optimized CatBoost algorithm.
Zhou, Yifei; Wang, Shunli; Xie, Yanxing; Zeng, Jiawei; Fernandez, Carlos
Authors
Abstract
Due to the large-scale application of electric vehicles, the remaining service life prediction and health status diagnosis of lithium-ion batteries as their power core is particularly important, and the essence of RUL prediction and SOH diagnosis is the prediction of remaining capacity. Through the aging experiment of cycle charging and discharging of lithium-ion batteries, the health features of experimental data are extracted for the prediction of remaining capacity. In this paper, a deep feature extraction method based on Bilinear CNN combined with CatBoost algorithm based on fractional order method optimization particle swarm optimization, and ant colony optimization algorithm is proposed for battery remaining capacity prediction. Seven groups of health features extracted from ten groups of battery data were used to input them into the optimized CatBoost algorithm for regression prediction. The results show that the proposed model achieves accurate SOH and RUL prediction, the three evaluation indicators MAE, RMSE, and MAPE of SOH are all within 1.7 % and the error rate of RUL is not higher than 1.5 %, and the test of multiple batteries also proves its strong robustness.
Citation
ZHOU, Y., WANG, S., XIE, Y., ZENG, J. and FERNANDEZ, C. 2024. Remaining useful life prediction and state of health diagnosis of lithium-ion batteries with multiscale health features based on optimized CatBoost algorithm. Energy [online], 300, article number 131575. Available from: https://doi.org/10.1016/j.energy.2024.131575
Journal Article Type | Article |
---|---|
Acceptance Date | May 5, 2024 |
Online Publication Date | May 6, 2024 |
Publication Date | Aug 1, 2024 |
Deposit Date | May 10, 2024 |
Publicly Available Date | May 7, 2025 |
Journal | Energy |
Print ISSN | 0360-5442 |
Electronic ISSN | 1873-6785 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 300 |
Article Number | 131575 |
DOI | https://doi.org/10.1016/j.energy.2024.131575 |
Keywords | Lithium-ion battery; Remaining useful life; State of health; CatBoost; IFO-PSO-ACO |
Public URL | https://rgu-repository.worktribe.com/output/2333300 |
Files
This file is under embargo until May 7, 2025 due to copyright reasons.
Contact publications@rgu.ac.uk to request a copy for personal use.
You might also like
Spectrophotometric and chromatographic analysis of creatine: creatinine crystals in urine.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search