Professor Eyad Elyan e.elyan@rgu.ac.uk
Professor
A genetic algorithm approach to optimising random forests applied to class engineered data.
Elyan, Eyad; Gaber, Mohamed Medhat
Authors
Mohamed Medhat Gaber
Abstract
In numerous applications and especially in the life science domain, examples are labelled at a higher level of granularity. For example, binary classification is dominant in many of these datasets, with the positive class denoting the existence of a particular disease in medical diagnosis applications. Such labelling does not depict the reality of having different categories of the same disease; a fact evidenced in the continuous research in root causes and variations of symptoms in a number of diseases. In a quest to enhance such diagnosis, datasests were decomposed using clustering of each class to reveal hidden categories. We then apply the widely adopted ensemble classification technique Random Forests. Such class decomposition has two advantages: (1) diversification of the input that enhances the ensemble classification; and (2) improving class separability, easing the follow-up classification process. However, to be able to apply Random Forests on such class decomposed data, three main parameters need to be set: number of trees forming the ensemble, number of features to split on at each node, and a vector representing the number of clusters in each class. The large search space for tuning these parameters has motivated the use of Genetic Algorithm to optimise the solution. A thorough experimental study on 22 real datasets was conducted, predominantly in a variety of life science applications. To prove the applicability of the method to other areas of application, the proposed method was tested on a number of datasets from other domains. Three variations of Random Forests including the proposed method as well as a boosting ensemble classifier were used in the experimental study. The results prove the superiority of the proposed method in boosting up the accuracy.
Citation
ELYAN, E. and GABER, M.M. 2017. A genetic algorithm approach to optimising random forests applied to class engineered data. Information sciences [online], 384, pages 220-234. Available from: https://doi.org/10.1016/j.ins.2016.08.007
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 3, 2016 |
Online Publication Date | Aug 4, 2016 |
Publication Date | Apr 1, 2017 |
Deposit Date | Aug 9, 2016 |
Publicly Available Date | Aug 5, 2017 |
Journal | Information sciences |
Print ISSN | 0020-0255 |
Electronic ISSN | 1872-6291 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 384 |
Pages | 220-234 |
DOI | https://doi.org/10.1016/j.ins.2016.08.007 |
Keywords | Random forests; Genetic algorithm; Class decomposition; Life science |
Public URL | http://hdl.handle.net/10059/1555 |
Contract Date | Aug 9, 2016 |
Files
ELYAN 2016 A genetic algorithm approach
(1.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
A multimodel-based screening framework for C-19 using deep learning-inspired data fusion.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search