Nathan Skillen
The application of a novel fluidised photo reactor under UV-Visible and natural solar irradiation in the photocatalytic generation of hydrogen.
Skillen, Nathan; Adams, Morgan; McCullagh, Cathy; Ryu, Su Young; Fina, Federica; Hoffmann, Michael R.; Irvine, John T.S.; Robertson, Peter K.J.
Authors
Dr Morgan Adams m.adams1@rgu.ac.uk
Lecturer
Dr Cathy McCullagh c.mccullagh@rgu.ac.uk
Lecturer
Su Young Ryu
Federica Fina
Michael R. Hoffmann
John T.S. Irvine
Peter K.J. Robertson
Abstract
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential 'solar fuel generator'. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in turn limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3·La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035rpm and 144W of UV-Visible irradiation, which produced a rate of 89μmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.
Citation
SKILLEN, N., ADAMS, M., MCCULLAGH, C., RYU, S.Y., FINA, F., HOFFMANN, M.R., IRVINE, J.T.S. and ROBERTSON, P.K.J. 2016. The application of a novel fluidised photo reactor under UV-Visible and natural solar irradiation in the photocatalytic generation of hydrogen. Chemical engineering journal [online], 286, pages 610-621. Available from: https://doi.org/10.1016/j.cej.2015.10.101
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 29, 2015 |
Online Publication Date | Nov 4, 2015 |
Publication Date | Feb 15, 2016 |
Deposit Date | Sep 9, 2016 |
Publicly Available Date | Nov 5, 2016 |
Journal | Chemical engineering journal |
Print ISSN | 1385-8947 |
Electronic ISSN | 1873-295X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 286 |
Pages | 610-621 |
DOI | https://doi.org/10.1016/j.cej.2015.10.101 |
Keywords | Hydrogen; Water splitting; Photocatalysis; Fluidised photo reactor; Solar light |
Public URL | http://hdl.handle.net/10059/1641 |
Contract Date | Sep 9, 2016 |
Files
SKILLEN 2016 The application of a novel fluidised
(3.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming.
(2019)
Journal Article
Photocatalytic conversion of cellulose into C5 oligosaccharides.
(2023)
Journal Article
Photocatalytic splitting of water.
(2014)
Other
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search