Skip to main content

Research Repository

See what's under the surface

Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation.

Goel, Saurav; Faisal, Nadimul Haque; Luo, Xichun; Yan, Jiwang; Agrawal, Anupam

Authors

Saurav Goel

Nadimul Haque Faisal

Xichun Luo

Jiwang Yan

Anupam Agrawal



Abstract

This paper presents novel advances in the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: indentation of a polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical (arc) indenter, and (iii and iv) indentation of a single crystal silicon substrate with these two indenters. The simulation results reveal that high pressure phase transformation (HPPT) in silicon (Si-I to Si-II phase transformation) occurred in all cases; however, its extent and the manner in which it occurred differed significantly between polycrystalline silicon and single crystal silicon, and was the main driver of differences in the nanoindentation deformation behaviour between these two types of silicon. Interestingly, in polycrystalline silicon, the HPPT was observed to occur more preferentially along the grain boundaries than across the grain boundaries. An automated dislocation extraction algorithm (DXA) revealed no dislocations in the deformation zone, suggesting that HPPT is the primary mechanism in inducing plasticity in silicon.

Journal Article Type Article
Publication Date Jun 13, 2014
Journal Journal of physics D: applied physics
Print ISSN 0022-3727
Electronic ISSN 1361-6463
Publisher IOP Publishing
Peer Reviewed Peer Reviewed
Volume 47
Issue 27
Article Number 275304
Institution Citation GOEL, S., FAISAL, N.H., LUO, X., YAN, J. and AGRAWAL, A. 2014. Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. Journal of physics D: applied physics [online], 47(27), article number 275304. Available from: https://doi.org/10.1088/0022-3727/47/27/275304
DOI https://doi.org/10.1088/0022-3727/47/27/275304
Keywords MD simulation; Polycrystalline silicon; Single crystal silicon; Nanoindentation

Files







Downloadable Citations