Research Repository

See what's under the surface

Numerical investigation of nanostructured silica PCFs for sensing applications.

Johny, Jincy; Prabhu, Radhakrishna; Fung, Wai Keung

Authors

Jincy Johny

Radhakrishna Prabhu

Wai Keung Fung

Abstract

Photonic crystal fibers (PCFs) developed using nanostructured composite materials provide special optical properties. PCF light propagation and modal characteristics can be tailored by modifying their structural and material parameters. Structuring and infusion of liquid crystal materials enhances the capabilities of all silica PCFs, facilitating their operation in different spectral regimes. The wavelength tunability feature of nanostructured PCFs can be utilized for many advanced sensing applications. This paper discusses a new approach to modify the optical properties of PCFs by periodic nanostructuring and composite material (liquid crystal-silica) infiltration. PCF characteristics like confinement wavelength, confinement loss, mode field diameter (MFD) and bandwidth are investigated by varying the structural parameters and material infiltrations. Theoretical study revealed that composite material infusion resulted in a spectral band shift accompanied by an improvement in PCF bandwidth. Moreover, nanostructured PCFs also achieved reduced confinement losses and improved MFD which is very important in long-distance remote sensing applications.

Journal Article Type Article
Publication Date Nov 30, 2017
Journal JOM: journal of the Minerals, Metals and Materials Society
Print ISSN 1047-4838
Electronic ISSN 1543-1851
Publisher Springer (part of Springer Nature)
Peer Reviewed Peer Reviewed
Volume 69
Issue 11
Pages 2286-2291
Institution Citation JOHNY, J., PRABHU, R. and FUNG, W.K. 2017. Numerical investigation of nanostructured silica PCFs for sensing applications. JOM: journal of the Minerals, Metals and Materials Society [online], 69(11), pages 2286-2291. Available from: https://doi.org/10.1007/s11837-017-2366-y
DOI https://doi.org/10.1007/s11837-017-2366-y
Keywords Nanostructures; PCFs; Sensing

Files




Downloadable Citations