Jincy Johny
Design of optical fibre based highly sensitive acoustic sensor for underwater applications.
Johny, Jincy; Smith, Thomas; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna
Authors
Abstract
Fibre optic sensing is a key technology for a variety of underwater sensing and monitoring applications. Fibre optic acoustic sensors are mainly based on interferometric detection approach where the acoustic pressure-induced phase shift of light has been used as sensing principle. Recently, fibre optic acoustic sensors based on speciality fibres like Photonic Crystal Fibre (PCF) were reported. However, interferometry based detection approaches amongst all these fibre optics sensors are intensity based and therefore susceptible to light power fluctuations and require a complex instrumentation related to signal detection. Besides, wavelength based detection approach using FBG (Fibre Bragg Grating) offers significant advantages over the conventional approach. FBG sensors were reported to have higher performance for underwater acoustic sensing applications. This paper reports a novel design of an underwater acoustic pressure sensor using a combination of PCF and FBG to provide high sensitivity. Theoretical investigations were carried out on the PCF-FBG sensor to study the effect of applied pressure and induced strain on the FBG inscribed in the core of PCF. Effect of light confinement in PCF was studied for different geometrical parameters and 4-ring PCF structure was reported. Further, sensitivity enhancement was proposed utilizing air hole structure of the PCF to enhance the impact of acoustic pressure on the induced strain in FBG.
Citation
JOHNY, J., SMITH, T., BHAVSAR, K. and PRABHU, R. 2017. Design of optical fibre based highly sensitive acoustic sensor for underwater applications. In Proceedings of OCEANS 2017, 19-22 June 2017, Aberdeen, UK. New York: IEEE [online], article number 8084974, pages 2393-2397. Available from: https://doi.org/10.1109/OCEANSE.2017.8084974
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | OCEANS 2017 (Aberdeen) |
Start Date | Jun 19, 2017 |
End Date | Jun 22, 2017 |
Acceptance Date | Jun 19, 2017 |
Online Publication Date | Jun 19, 2017 |
Publication Date | Oct 26, 2017 |
Deposit Date | Jan 29, 2018 |
Publicly Available Date | Jan 29, 2018 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Peer Reviewed | Peer Reviewed |
Article Number | 8084974 |
Pages | 2393-2397 |
ISBN | 9781538621110 |
DOI | https://doi.org/10.1109/OCEANSE.2017.8084974 |
Keywords | Acoustic sensors; Optical fibre; Interferometry; PCF; FBG |
Public URL | http://hdl.handle.net/10059/2696 |
Contract Date | Jan 29, 2018 |
Files
JOHNY 2017 Design of optical fibre
(877 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
Optical fibre-based sensors for oil and gas applications.
(2021)
Journal Article
Numerical investigation of nanostructured silica PCFs for sensing applications.
(2017)
Journal Article
Investigation of positioning of FBG sensors for smart monitoring of oil and gas subsea structures.
(2016)
Presentation / Conference Contribution
Computational study of nanostructured composite materials for photonic crystal fibre sensors.
(2017)
Presentation / Conference Contribution
Theoretical investigation of positional influence of FBG sensors for structural health monitoring of offshore structures.
(2017)
Presentation / Conference Contribution