Prapa Rattadilok
Inferential measurements for situation awareness: enhancing traffic surveillance by machine learning.
Rattadilok, Prapa; Petrovski, Andrei
Abstract
The paper proposes a generic approach to building inferential measurement systems. The large amount of data needed to be acquired and processed by such systems necessitates the use of machine learning techniques. In this study, an inferential measurement system aimed at enhancing situation awareness has been developed and tested on simulated traffic surveillance data. The performance of several Computational Intelligence techniques within this system has been examined and compared on the data containing anomalous driving patterns.
Citation
RATTADILOK, P. and PETROVSKI, A. 2013. Inferential measurements for situation awareness: enhancing traffic surveillance by machine learning. In Proceedings of the 2013 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA 2013), 15-17 July 2013, Milan, Italy. New York: IEEE [online], article number 6617402, pages 93-98. Available from: https://doi.org/10.1109/CIVEMSA.2013.6617402
Conference Name | 2013 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA 2013) |
---|---|
Conference Location | Milan, Italy |
Start Date | Jul 15, 2013 |
End Date | Jul 17, 2013 |
Acceptance Date | Jul 31, 2013 |
Online Publication Date | Jul 31, 2013 |
Publication Date | Oct 3, 2013 |
Deposit Date | Feb 12, 2015 |
Publicly Available Date | Feb 12, 2015 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Article Number | 6617402 |
Pages | 93-98 |
Series Title | Proceedings of the IEEE international conference on computational intelligence and virtual environments for measurement systems and applications |
ISBN | 9781467347013 |
DOI | https://doi.org/10.1109/CIVEMSA.2013.6617402 |
Keywords | Inferential measurement; Situation awareness; Machine learning; Anomaly detection; Unmanned aerial vehicles |
Public URL | http://hdl.handle.net/10059/1145 |
Files
RATTADILOK 2013 Inferential measurements for situation
(759 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Intelligent measurement in unmanned aerial cyber physical systems for traffic surveillance.
(2016)
Conference Proceeding
Designing a context-aware cyber physical system for detecting security threats in motor vehicles.
(2015)
Conference Proceeding
Anomaly monitoring framework based on intelligent data analysis.
(2013)
Conference Proceeding