Olubukola Tokede
Mapping relational efficiency in neuro-fuzzy hybrid cost models.
Tokede, Olubukola; Ahiaga-Dagbui, Dominic; Smith, Simon; Wamuziri, Sam
Authors
Dominic Ahiaga-Dagbui
Simon Smith
Sam Wamuziri
Contributors
Daniel Castro-Lacouture
Editor
Javier Irizarry
Editor
Baabak Ashuri
Editor
Abstract
Significant improvements are achievable in the accuracy of cost estimates if cost models adequately incorporate issues of flexibility and uncertainty. This study evaluates the relational efficiencies of the fuzzy composition operators “ the max-min and max-product, in establishing the final cost of water infrastructure projects. Cost and project data was collected on 1600 water infrastructure projects completed in Scotland between 2000 and 2011. Neural network is first used to develop relative weightings of relevant cost predictors. These were then standardized into fuzzy sets to establish a consistent effect of each variable on the overall target cost. The strength and degree of relationship of the normalized cost predictor weightings and the fuzzified project attributes were combined using the max-min and max-product composition operators to obtain project cost predictions. The predictions from the two composition operators are compared with the actual cost figures. Results show comparable performance in the efficiency of the composition operators. Based on statistical correlations, the max-product composition operator achieved on average a deviation of 1.71% while the max-min composition had an average deviation of 1.86%. Improvements in the relational efficiency of neuro-fuzzy hybrid cost models could assist in developing a robust framework for realistic cost targets on construction projects.
Citation
TOKEDE, O., AHIAGA-DAGBUI, D., SMITH, S. and WAMUZIRI, S. 2014. Mapping relational efficiency in neuro-fuzzy hybrid cost models. In Castro-Lacouture, D., Irizarry, J. and Ashuri, B. (eds.) Proceedings of the 2014 Construction research congress: construction in a global network, 19-21 May 2014, Atlanta, USA. Reston, VA: ASCE [online], pages 1458-1467. Available from: https://doi.org/10.1061/9780784413517.149
Conference Name | 2014 Construction research congress |
---|---|
Conference Location | Atlanta, USA |
Start Date | May 19, 2014 |
End Date | May 21, 2014 |
Acceptance Date | May 13, 2014 |
Online Publication Date | May 21, 2014 |
Publication Date | Dec 31, 2014 |
Deposit Date | Oct 21, 2015 |
Publicly Available Date | Oct 21, 2015 |
Publisher | ASCE American Society of Civil Engineers |
Pages | 1458-1467 |
ISBN | 9780784413517 |
DOI | https://doi.org/10.1061/9780784413517.149 |
Keywords | Hybrid methods; Infrastructure; Mapping; Fuzzy sets; Structural models; Uncertainty principles; Construction costs; Model accuracy; United Kingdom; Europe |
Public URL | http://hdl.handle.net/10059/1318 |
Files
TOKEDE 2014 Mapping relational efficiency
(678 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Exploring visual asset management collaboration: learning from the oil and gas sector.
(2017)
Conference Proceeding
Evaluating the whole-life cost implication of revocability and disruption in office retrofit building projects.
(2016)
Conference Proceeding
Spotlight on construction cost overrun research: superficial, replicative and stagnated.
(2015)
Conference Proceeding
Modelling economic risks in megaproject construction: a systemic approach.
(2015)
Conference Proceeding