Khaled Fawagreh
On pruning and feature engineering in Random Forests.
Fawagreh, Khaled
Authors
Contributors
Mohamed Medhat Gaber
Supervisor
Professor Eyad Elyan e.elyan@rgu.ac.uk
Supervisor
Abstract
Random Forest (RF) is an ensemble classification technique that was developed by Leo Breiman over a decade ago. Compared with other ensemble techniques, it has proved its accuracy and superiority. Many researchers, however, believe that there is still room for optimizing RF further by enhancing and improving its performance accuracy. This explains why there have been many extensions of RF where each extension employed a variety of techniques and strategies to improve certain aspect(s) of RF. The main focus of this dissertation is to develop new extensions of RF using new optimization techniques that, to the best of our knowledge, have never been used before to optimize RF. These techniques are clustering, the local outlier factor, diversified weighted subspaces, and replicator dynamics. Applying these techniques on RF produced four extensions which we have termed CLUB-DRF, LOFB-DRF, DSB-RF, and RDB-DR respectively. Experimental studies on 15 real datasets showed favorable results, demonstrating the potential of the proposed methods. Performance-wise, CLUB-DRF is ranked first in terms of accuracy and classifcation speed making it ideal for real-time applications, and for machines/devices with limited memory and processing power.
Citation
FAWAGREH, K. 2016. On pruning and feature engineering in Random Forests. Robert Gordon University, PhD thesis.
Thesis Type | Thesis |
---|---|
Deposit Date | Jan 20, 2017 |
Publicly Available Date | Jan 20, 2017 |
Keywords | Random Forests; Ensemble classification; Clustering; Local outlier factor; Replicator dynamics |
Public URL | http://hdl.handle.net/10059/2113 |
Contract Date | Jan 20, 2017 |
Award Date | Oct 31, 2016 |
Files
FAWAGREH 2016 On pruning and feature engineering
(4.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© The Author.
You might also like
An outlier ranking tree selection approach to extreme pruning of random forests.
(2016)
Presentation / Conference Contribution
A multimodel-based screening framework for C-19 using deep learning-inspired data fusion.
(2024)
Journal Article
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search