Blessing Mbipom
Improving e-learning recommendation by using background knowledge.
Mbipom, Blessing; Craw, Susan; Massie, Stewart
Authors
Professor Susan Craw s.craw@rgu.ac.uk
Emeritus Professor
Dr Stewart Massie s.massie@rgu.ac.uk
Reader
Abstract
There is currently a large amount of e-Learning resources available to learners on the Web. However, learners often have difficulty finding and retrieving relevant materials to support their learning goals because they lack the domain knowledge to craft effective queries that convey what they wish to learn. In addition, the unfamiliar vocabulary often used by domain experts makes it difficult to map a learner's query to a relevant learning material. We address these challenges by introducing an innovative method that automatically builds background knowledge for a learning domain. In creating our method, we exploit a structured collection of teaching materials as a guide for identifying the important domain concepts. We enrich the identified concepts with discovered text from an encyclopedia, thereby increasing the richness of our acquired knowledge. We employ the developed background knowledge for influencing the representation and retrieval of learning resources to improve e-Learning recommendation. The effectiveness of our method is evaluated using a collection of Machine Learning and Data Mining papers. Our method outperforms the benchmark, demonstrating the advantage of using background knowledge for improving the representation and recommendation of e-Learning materials.
Citation
MBIPOM, B., CRAW, S. and MASSIE, S. 2021. Improving e-learning recommendation by using background knowledge. Expert systems [online], 38(7): artificial intelligence/EDMA 2017, article e12265. Available from: https://doi.org/10.1111/exsy.12265
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 8, 2017 |
Online Publication Date | Jan 26, 2018 |
Publication Date | Nov 30, 2021 |
Deposit Date | Jan 5, 2018 |
Publicly Available Date | Jan 27, 2019 |
Journal | Expert systems |
Print ISSN | 0266-4720 |
Electronic ISSN | 1468-0394 |
Publisher | Wiley Open Access |
Peer Reviewed | Peer Reviewed |
Volume | 38 |
Issue | 7 |
Article Number | e12265 |
DOI | https://doi.org/10.1111/exsy.12265 |
Keywords | eLearning; Knowledge; Learning materials |
Public URL | http://hdl.handle.net/10059/2640 |
Files
MBIPOM 2021 Improving e-learning (AAM)
(8.3 Mb)
PDF
Copyright Statement
You might also like
Harnessing background knowledge for e-learning recommendation.
(2016)
Conference Proceeding
Visualisation to explain personal health trends in smart homes.
(2021)
Presentation / Conference
Wifi-based human activity recognition using Raspberry Pi.
(2020)
Conference Proceeding
Representing temporal dependencies in smart home activity recognition for health monitoring.
(2020)
Conference Proceeding