Skip to main content

Research Repository

Advanced Search

Optimal coil design for maximum power transfer efficiency in resonantly coupled systems.

Heidarian, Maryam; Burgess, Samuel J.; Prabhu, Radhakrishna; Fough, Nazila


Maryam Heidarian

Samuel J. Burgess


Maintaining maximum power transfer efficiency (PTE) is one of the main challenges in resonant inductive power transfer (IPT) systems. Maximum PTE can be achieved if the coupling between transmitter and receiver coils is strong. One way of achieving this is to geometrically optimise a coil by employing small ohmic resistance combined with high self-inductance. In this paper a design method for an optimum coil geometry which offers maximum PTE has been introduced. The proposed technique, in addition to minimising the system’s physical size, provides high level of PTE for both strongly- and loosely-coupled links. A design example for a typical IPT system is presented that shows, with a proper selection of strong coupling factor (e.g.: C = 220.), the designed coil geometry can provide maximum PTE of 95.4% for coupling coefficient K = 1. Also, for a loose inductive link with K = 0.215, maximum calculated and measured PTE values are 89% and 86%, respectively.

Start Date Jul 7, 2019
Publication Date Oct 10, 2019
Publisher Institute of Electrical and Electronics Engineers
Pages 73-74
Institution Citation HEIDARIAN, M., BURGESS, S.J., PRABHU, R. and FOUGH, N. 2019. Optimal coil design for maximum power transfer efficiency in resonantly coupled systems. In Proceedings of 2019 United States National Committee for the International Union for Radio Science (USNC-URSI) radio science meeting (URSI 2019), co-located with 2019 Antennas and propagation symposium (AP-S/URSI 2019), 7-12 July 2019, Atlanta, USA. Piscataway: IEEE [online], pages 73-74. Available from:
Keywords Couplings; Resistance; Geometry; Transmitters; Receivers; Magnetic resonance; Transceivers


You might also like

Downloadable Citations