Lin Lu
Build-to-last: strength to weight 3D printed objects.
Lu, Lin; Sharf, Andrei; Zhao, Haisen; Wei, Yuan; Fan, Qingnan; Chen, Xuelin; Savoye, Yann; Tu, Changhe; Cohen-Or, Daniel; Chen, Baoquan
Authors
Andrei Sharf
Haisen Zhao
Yuan Wei
Qingnan Fan
Xuelin Chen
Yann Savoye
Changhe Tu
Daniel Cohen-Or
Baoquan Chen
Abstract
The emergence of low-cost 3D printers steers the investigation of new geometric problems that control the quality of the fabricated object. In this paper, we present a method to reduce the material cost and weight of a given object while providing a durable printed model that is resistant to impact and external forces. We introduce a hollowing optimization algorithm based on the concept of honeycomb-cells structure. Honeycombs structures are known to be of minimal material cost while providing strength in tension. We utilize the Voronoi diagram to compute irregular honeycomb-like volume tessellations which define the inner structure. We formulate our problem as a strength–to–weight optimization and cast it as mutually finding an optimal interior tessellation and its maximal hollowing subject to relieve the interior stress. Thus, our system allows to build-to-last 3D printed objects with large control over their strength-to-weight ratio and easily model various interior structures. We demonstrate our method on a collection of 3D objects from different categories. Furthermore, we evaluate our method by printing our hollowed models and measure their stress and weights.
Citation
LU, L., SHARF, A., ZHAO, H., WEI, Y., FAN., Q., CHEN, X., SAVOYE, Y., TU, C., COHEN-OR, D. and CHEN, B. 2014. Build-to-last: strength to weight 3D printed objects. ACM transactions on graphics [online], 33(4), article No. 97. Available from: https://doi.org/10.1145/2601097.2601168
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 27, 2014 |
Online Publication Date | Jul 27, 2014 |
Publication Date | Jul 31, 2014 |
Deposit Date | Mar 5, 2020 |
Publicly Available Date | Mar 5, 2020 |
Journal | ACM transactions on graphics |
Print ISSN | 0730-0301 |
Electronic ISSN | 1557-7368 |
Publisher | ACM Association for Computing Machinery |
Peer Reviewed | Peer Reviewed |
Volume | 33 |
Issue | 4 |
Article Number | 97 |
DOI | https://doi.org/10.1145/2601097.2601168 |
Keywords | Porous structure design; 3D printing technologies; Volume-voronoi shape; Solid object hollowing |
Public URL | https://rgu-repository.worktribe.com/output/860392 |
Files
LU 2014 Build-to-last
(28.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
LU 2014 Build-to-last (MP4)
(20.3 Mb)
Video