Erika Castrignan�
(Fluoro)quinolones and quinolone resistance genes in the aquatic environment: a river catchment perspective.
Castrignan�, Erika; Kannan, Andrew M.; Proctor, Kathryn; Petrie, Bruce; Hodgen, Sarah; Feil, Edward J.; Lewis, Simon E.; Lopardo, Luigi; Camacho-Muñoz, Dolores; Rice, Jack; Cartwright, Nick; Barden, Ruth; Kasprzyk-Hordern, Barbara
Authors
Andrew M. Kannan
Kathryn Proctor
Dr Bruce Petrie b.r.petrie@rgu.ac.uk
Associate Professor
Sarah Hodgen
Edward J. Feil
Simon E. Lewis
Luigi Lopardo
Dolores Camacho-Muñoz
Jack Rice
Nick Cartwright
Ruth Barden
Barbara Kasprzyk-Hordern
Abstract
This study provides an insight into the prevalence of (fluoro)quinolones (FQs) and their specific quinolone qnrS resistance gene in the Avon river catchment area receiving treated wastewater from 5 wastewater treatment plants (WWTPs), serving 1.5 million people and accounting for 75% of inhabitants living in the catchment area in the South West of England. Ofloxacin, ciprofloxacin, nalidixic acid and norfloxacin were found to be ubiquitous with daily loads reaching a few hundred g/day in wastewater influent and tens of g/day in receiving waters. This was in contrast to other FQs analysed: flumequine, nadifloxacin, lomefloxacin, ulifloxacin, prulifloxacin, besifloxacin and moxifloxacin, which were hardly quantified. Enantiomeric profiling revealed that ofloxacin was enriched with the S-(−)-enantiomer, likely deriving from its prescription as the more potent enantiomerically pure levofloxacin, alongside racemic ofloxacin. While ofloxacin's enantiomeric fraction (EF) remained constant, high stereoselectivity was observed in the case of its metabolite ofloxacin-N-oxide. The removal efficiency of quinolones during wastewater treatment at 5 WWTPs utilising either trickling filters (TF) or activated sludge (AS), was compound and wastewater treatment process dependent, with AS providing better efficiency than TF. The qnrS resistance gene was ubiquitous in wastewater. Its removal was WWTP treatment process dependent with TF performing best and resulting in significant removal of the gene (from 28 to 75%). AS underperformed with only 9% removal in the case of activated sludge and actual increase in the gene copy number within sequencing batch reactors (SBRs). Interestingly, the data suggests that higher removal of antibiotics could be linked with high prevalence of the gene (SBR and WWTP E) and vice versa, low removal of antibiotic is correlated with lower prevalence of the gene in wastewater effluent (TF, WWTP B and D). This is especially prominent in the case of ofloxacin and could indicate that AS might be facilitating antimicrobial resistance (AMR) prevalence to higher extent than TF. Wastewater-based epidemiology (WBE) was also applied to monitor any potential misuse (e.g. direct disposal) of FQs in the catchment. In most cases higher use of antibiotics with respect to official statistics (i.e. ciprofloxacin, ofloxacin) was observed, which suggests that FQs management practice require further attention.
Citation
CASTRIGNANÒ, E., KANNAN, A.M., PROCTOR, K., PETRIE, B., HODGEN, S., FEIL, E.J., LEWIS, S.E., LOPARDO, L., CAMACHO-MUÑOZ, D., RICE, J., CARTWRIGHT, N., BARDEN, R. and KASPRZYK-HORDERN, B. 2020. (Fluoro)quinolones and quinolone resistance genes in the aquatic environment: a river catchment perspective. Water research [online], 182, article ID 116015. Available from: https://doi.org/10.1016/j.watres.2020.116015
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 2, 2020 |
Online Publication Date | Jun 6, 2020 |
Publication Date | Sep 1, 2020 |
Deposit Date | Jul 2, 2020 |
Publicly Available Date | Jun 7, 2021 |
Journal | Water research |
Print ISSN | 0043-1354 |
Electronic ISSN | 1879-2448 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 182 |
Article Number | 116015 |
DOI | https://doi.org/10.1016/j.watres.2020.116015 |
Keywords | Fluoroquinolones; AMR; Resistance genes; Wastewater; Environment |
Public URL | https://rgu-repository.worktribe.com/output/930331 |
Files
CASTRIGNANÒ 2020 (Fluoro)quinolones
(2.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Downloadable Citations
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search