Skip to main content

Research Repository

Advanced Search

Detecting malicious signal manipulation in smart grids using intelligent analysis of contextual data. (2020)
Conference Proceeding
MAJDANI, F., BATIK, L., PETROVSKI, A. and PETROVSKI, S. 2020. Detecting malicious signal manipulation in smart grids using intelligent analysis of contextual data. In Proceedings of the 13th International conference on security of information and networks (SIN 2020), 4-7 November 2020, Merkez, Turkey. New York: ACM [online], (accepted). To be made available from: https://doi.org/10.1145/3433174.3433613

This paper looks at potential vulnerabilities of the Smart Grid energy infrastructure to data injection cyber-attacks and the means of addressing these vulnerabilities through intelligent data analysis. Efforts are being made by multiple groups to pr... Read More about Detecting malicious signal manipulation in smart grids using intelligent analysis of contextual data..

Automated anomaly recognition in real time data streams for oil and gas industry. (2020)
Thesis
MAJDANI SHABESTARI, F. 2020. Automated anomaly recognition in real time data streams for oil and gas industry. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

There is a growing demand for computer-assisted real-time anomaly detection - from the identification of suspicious activities in cyber security, to the monitoring of engineering data for various applications across the oil and gas, automotive and ot... Read More about Automated anomaly recognition in real time data streams for oil and gas industry..