Skip to main content

Research Repository

Advanced Search

All Outputs (109)

Enhancing systematic reviews: an in-depth analysis on the impact of active learning parameter combinations for biomedical abstract screening. (2024)
Journal Article
OFORI-BOATENG, R., TRUJILLO-ESCOBAR, T.G., ACEVES-MARTINS, M., WIRATUNGA, N. and MORENO-GARCIA, C.F. 2024. Enhancing systematic reviews: an in-depth analysis on the impact of active learning parameter combinations for biomedical abstract screening. Artificial intelligence in medicine [online], 157, article number 102989. Available from: https://doi.org/10.1016/j.artmed.2024.102989

Systematic Review (SR) are foundational to influencing policies and decision-making in healthcare and beyond. SRs thoroughly synthesise primary research on a specific topic while maintaining reproducibility and transparency. However, the rigorous nat... Read More about Enhancing systematic reviews: an in-depth analysis on the impact of active learning parameter combinations for biomedical abstract screening..

iSee: a case-based reasoning platform for the design of explanation experiences. (2024)
Journal Article
CARO-MARTÍNEZ, M., RECIO-GARCÍA, J.A., DÍAZ-AGUDO, B., DARIAS, J.M., WIRATUNGA, N., MARTIN, K., WIJEKOON, A., NKISI-ORJI, I., CORSAR, D., PRADEEP, P., BRIDGE, D. and LIRET, A. 2024. iSee: a case-based reasoning platform for the design of explanation experiences. Knowledge-based systems [online], 302, article number 112305. Available from: https://doi.org/10.1016/j.knosys.2024.112305

Explainable Artificial Intelligence (XAI) is an emerging field within Artificial Intelligence (AI) that has provided many methods that enable humans to understand and interpret the outcomes of AI systems. However, deciding on the best explanation app... Read More about iSee: a case-based reasoning platform for the design of explanation experiences..

Towards the automation of systematic reviews using natural language processing, machine learning, and deep learning: a comprehensive review. (2024)
Journal Article
OFORI-BOATENG, R., ACEVES-MARTINS, M., WIRATUNGA, N. and MORENO-GARCIA, C.F. 2024. Towards the automation of systematic reviews using natural language processing, machine learning, and deep learning: a comprehensive review. Artificial intelligence review [online], 57(8), article number 200. Available from: https://doi.org/10.1007/s10462-024-10844-w

Systematic reviews (SRs) constitute a critical foundation for evidence-based decision-making and policy formulation across various disciplines, particularly in healthcare and beyond. However, the inherently rigorous and structured nature of the SR pr... Read More about Towards the automation of systematic reviews using natural language processing, machine learning, and deep learning: a comprehensive review..

Context-aware data-to-text generation. (2024)
Thesis
UPADHYAY, A. 2024. Context-aware data-to-text generation. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-2571408

Data-to-Text Generation (D2T) is the subfield of Artificial Intelligence (AI) and Natural Language Processing (NLP) that aims to build systems capable of summarising nonlinguistic structured data into textual reports. D2T systems extract important in... Read More about Context-aware data-to-text generation..

A user-centred evaluation of DisCERN: discovering counterfactuals for code vulnerability detection and correction. (2023)
Journal Article
WIJEKOON, A. and WIRATUNGA, N. 2023. A user-centred evaluation of DisCERN: discovering counterfactuals for code vulnerability detection and correction. Knowledge-based systems [online], 278, article 110830. Available from: https://doi.org/10.1016/j.knosys.2023.110830

Counterfactual explanations highlight actionable knowledge which helps to understand how a machine learning model outcome could be altered to a more favourable outcome. Understanding actionable corrections in source code analysis can be critical to p... Read More about A user-centred evaluation of DisCERN: discovering counterfactuals for code vulnerability detection and correction..

iSee: demonstration video. [video recording] (2023)
Digital Artefact
WIJEKOON, A., WIRATUNGA, N., PALIHAWADANA, C., NKISI-ORJI, I., CORSAR, D. and MARTIN, K. 2023. iSee: demonstration video. [video recording]. New York: ACM [online]. Available from: https://dl.acm.org/doi/10.1145/3581754.3584137#sec-supp

This output presents a demonstration of the iSee platform. iSee is an ongoing project aimed at improving the user experience of AI by harnessing experiences and best practices in Explainable AI. To this end, iSee brings together research and developm... Read More about iSee: demonstration video. [video recording].

Clinical dialogue transcription error correction using Seq2Seq models. (2022)
Preprint / Working Paper
NANAYAKKARA, G., WIRATUNGA, N., CORSAR, D., MARTIN, K. and WIJEKOON, A. 2022. Clinical dialogue transcription error correction using Seq2Seq models. arXiv [online]. Available from: https://doi.org/10.48550/arXiv.2205.13572

Good communication is critical to good healthcare. Clinical dialogue is a conversation between health practitioners and their patients, with the explicit goal of obtaining and sharing medical information. This information contributes to medical decis... Read More about Clinical dialogue transcription error correction using Seq2Seq models..

Using artificial intelligence methods for systematic review in health sciences: a systematic review. (2022)
Journal Article
BLAIZOT, A., VEETTIL, S.K., SAIDOUNG, P., MORENO-GARCIA, C.F., WIRATUNGA, N., ACEVES-MARTINS, M., LAI, N.M. and CHAIYAKUNAPRUK, N. 2022. Using artificial intelligence methods for systematic review in health sciences: a systematic review. Research synthesis methods [online], 13(3), pages 353-362. Available from: https://doi.org/10.1002/jrsm.1553

The exponential increase in published articles makes a thorough and expedient review of literature increasingly challenging. This review delineated automated tools and platforms that employ artificial intelligence (AI) approaches and evaluated the re... Read More about Using artificial intelligence methods for systematic review in health sciences: a systematic review..

Using artificial intelligence methods for systematic review in health sciences: a systematic review. [Appendices] (2022)
Data
BLAIZOT, A., VEETTIL, S.K., SAIDOUNG, P., MORENO-GARCIA, C.F., WIRATUNGA, N., ACEVES-MARTINS, M., LAI, N.M. and CHAIYAKUNAPRUK, N. 2022. Using artificial intelligence methods for systematic review in health sciences: a systematic review. [Appendices]. Research synthesis methods [online], 1393), pages 353-362. Available from: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fjrsm.1553&file=jrsm1553-sup-0001-supinfo.docx

Systematic reviews are fundamental to evidence-based decision making, as they use a comprehensive search and synthesis of the available literature. Such an operation usually requires a team of reviewers to evaluate thousands of articles. With the exp... Read More about Using artificial intelligence methods for systematic review in health sciences: a systematic review. [Appendices].

FedSim: similarity guided model aggregation for federated learning. (2021)
Journal Article
PALIHAWADANA, C., WIRATUNGA, N., WIJEKOON, A. and KALUTARAGE, H. 2022. FedSim: similarity guided model aggregation for federated learning. Neurocomputing [online], 483: distributed machine learning, optimization and applications, pages 432-445. Available from: https://doi.org/10.1016/j.neucom.2021.08.141

Federated Learning (FL) is a distributed machine learning approach in which clients contribute to learning a global model in a privacy preserved manner. Effective aggregation of client models is essential to create a generalised global model. To what... Read More about FedSim: similarity guided model aggregation for federated learning..

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset] (2021)
Data
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. 2021. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset]. JAMA internal medicine [online], 181(10), pages 1288-1296. Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2782459#supplemental-tab

SELFBACK is an evidence-based decision support system that supports self-management of nonspecific low back pain. In specific, SELFBACK provides the user with evidence-based advice on physical activity level, strength/ flexibility exercises, and educ... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset].

Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. (2021)
Journal Article
SANDAL, L.F., BACH, K., ØVERÅS, C.K., WIRATUNGA, N., COOPER, K, et al. 2021. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. JAMA internal medicine [online], 181(10), pages 1288-1296. Available from: https://doi.org/10.1001/jamainternmed.2021.4097

Importance: Lower back pain (LBP) is a prevalent and challenging condition in primary care. The effectiveness of an individually tailored self-management support tool delivered via a smartphone app has not been rigorously tested. Objective: To invest... Read More about Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial..

Similarity and explanation for dynamic telecommunication engineer support. (2021)
Thesis
MARTIN, K. 2021. Similarity and explanation for dynamic telecommunication engineer support. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1447160

Understanding similarity between different examples is a crucial aspect of Case-Based Reasoning (CBR) systems, but learning representations optimised for similarity comparisons can be difficult. CBR systems typically rely on separate algorithms to le... Read More about Similarity and explanation for dynamic telecommunication engineer support..

Personalised exercise recognition towards improved self-management of musculoskeletal disorders. (2021)
Thesis
WIJEKOON, A. 2021. Personalised exercise recognition towards improved self-management of musculoskeletal disorders. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1358224

Musculoskeletal Disorders (MSD) have been the primary contributor to the global disease burden, with increased years lived with disability. Such chronic conditions require self-management, typically in the form of maintaining an active lifestyle whil... Read More about Personalised exercise recognition towards improved self-management of musculoskeletal disorders..

Evaluating explainability methods intended for multiple stakeholders. (2021)
Journal Article
MARTIN, K., LIRET, A., WIRATUNGA, N., OWUSU, G. and KERN, M. 2021. Evaluating explainability methods intended for multiple stakeholders. KI - Künstliche Intelligenz [online], 35(3-4), pages 397-411. Available from: https://doi.org/10.1007/s13218-020-00702-6

Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanat... Read More about Evaluating explainability methods intended for multiple stakeholders..

Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. (2020)
Journal Article
NORDSTOGA, A.L., BACH, K., SANI, S., WIRATUNGA, N., MORK, P.J., VILLUMSEN, M. and COOPER, K. 2020. Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study. JMIR rehabilitation and assistive technologies [online], 7(2), article number e18729. Available from: https://doi.org/10.2196/18729

Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being... Read More about Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study..

A knowledge-light approach to personalised and open-ended human activity recognition. (2020)
Journal Article
WIJEKOON, A., WIRATUNGA, N., SANI, S. and COOPER, K. 2020. A knowledge-light approach to personalised and open-ended human activity recognition. Knowledge-based systems [online], 192, article ID 105651. Available from: https://doi.org/10.1016/j.knosys.2020.105651

Human Activity Recognition (HAR) is a core component of clinical decision support systems that rely on activity monitoring for self-management of chronic conditions such as Musculoskeletal Disorders. Deployment success of such applications in part de... Read More about A knowledge-light approach to personalised and open-ended human activity recognition..

Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. (2019)
Journal Article
CHEN, Y.Y., WIRATUNGA, N. and LOTHIAN, R. 2020. Integrating selection-based aspect sentiment and preference knowledge for social recommender systems. Online information review [online], 44(2), pages 399-416. Available from: https://doi.org/10.1108/OIR-02-2017-0066

Purpose: Recommender system approaches such as collaborative and content-based filtering rely on user ratings and product descriptions to recommend products. More recently, recommender system research has focussed on exploiting knowledge from user-ge... Read More about Integrating selection-based aspect sentiment and preference knowledge for social recommender systems..

Representation and learning schemes for argument stance mining. (2019)
Thesis
CLOS, J. 2019. Representation and learning schemes for argument stance mining. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Argumentation is a key part of human interaction. Used introspectively, it searches for the truth, by laying down argument for and against positions. As a mediation tool, it can be used to search for compromise between multiple human agents. For this... Read More about Representation and learning schemes for argument stance mining..

Ontology driven information retrieval. (2019)
Thesis
NKISI-ORJI, I. 2019. Ontology driven information retrieval. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

Ontology-driven information retrieval deals with the use of entities specified in domain ontologies to enhance search and browse. The entities or concepts of lightweight ontological resources are traditionally used to index resources in specialised d... Read More about Ontology driven information retrieval..