Skip to main content

Research Repository

Advanced Search

All Outputs (6)

The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. (2019)
Journal Article
STEPHENS HEMINGWAY, B.H., BURGESS, K.E., ELYAN, E. and SWINTON, P.A. 2020. The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. International journal of sports science and coaching [online], 15(1), pages 60-71. Available from: https://doi.org/10.1177/1747954119887721

This study investigated the effects of measurement error and testing frequency on prediction accuracy of the standard fitness-fatigue model. A simulation-based approach was used to systematically assess measurement error and frequency inputs commonly... Read More about The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach..

Data stream mining: methods and challenges for handling concept drift. (2019)
Journal Article
WARES, S., ISAACS, J. and ELYAN, E. 2019. Data stream mining: methods and challenges for handling concept drift. SN applied sciences [online], 1(11), article ID 1412. Available from: https://doi.org/10.1007/s42452-019-1433-0

Mining and analysing streaming data is crucial for many applications, and this area of research has gained extensive attention over the past decade. However, there are several inherent problems that continue to challenge the hardware and the state-of... Read More about Data stream mining: methods and challenges for handling concept drift..

Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. (2019)
Journal Article
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. Information sciences [online], 509, pages 47-70. Available from: https://doi.org/10.1016/j.ins.2019.08.062

Class imbalanced datasets are common across different domains including health, security, banking and others. A typical supervised learning algorithm tends to be biased towards the majority class when dealing with imbalanced datasets. The learning ta... Read More about Neighbourhood-based undersampling approach for handling imbalanced and overlapped data..

MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network. (2019)
Journal Article
ALI-GOMBE, A. and ELYAN, E. 2019. MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network. Neurocomputing [online], 361, pages 212-221. Available from: https://doi.org/10.1016/j.neucom.2019.06.043

Class-imbalanced datasets are common across different domains such as health, banking, security and others. With such datasets, the learning algorithms are often biased toward the majority class-instances. Data Augmentation is a common approach tha... Read More about MFC-GAN: class-imbalanced dataset classification using multiple fake class generative adversarial network..

Video tampering localisation using features learned from authentic content. (2019)
Journal Article
JOHNSTON, P., ELYAN, E. and JAYNE, C. 2020. Video tampering localisation using features learned from authentic content. Neural computing and applications [online], 32(16): special issue on Real-world optimization problems and meta-heuristics and selected papers from the 19th Engineering applications of neural networks conference 2018 (EANN 2018), 3-5 September 2018, Bristol UK , pages 12243-12257. Available from: https://doi.org/10.1007/s00521-019-04272-z

Video tampering detection remains an open problem in the field of digital media forensics. As video manipulation techniques advance, it becomes easier for tamperers to create convincing forgeries that can fool human eyes. Deep learning methods have a... Read More about Video tampering localisation using features learned from authentic content..

A review of digital video tampering: from simple editing to full synthesis. (2019)
Journal Article
JOHNSTON, P. and ELYAN, E. 2019. A review of digital video tampering: from simple editing to full synthesis. Digital investigation [online], 29, pages 67-81. Available from: https://doi.org/10.1016/j.diin.2019.03.006

Video tampering methods have witnessed considerable progress in recent years. This is partly due to the rapid development of advanced deep learning methods, and also due to the large volume of video footage that is now in the public domain. Historica... Read More about A review of digital video tampering: from simple editing to full synthesis..