Skip to main content

Research Repository

Advanced Search

Dr Kyle Martin's Outputs (33)

SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024) (2024)
Presentation / Conference Contribution
MARTIN, K., SALIMI, P. and WIJAYASEKARA, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the 2024 SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online]. Available from: https://ceur-ws.org/Vol-3822/

In the last few years, Large Language Models (LLMs) underpinned by rapid advancements in Artificial Intelligence (AI) have grabbed the attention of academia, industry and the general public. Demonstrating hence before unseen capability to deal with a... Read More about SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024).

Extended results for: enhancing abstract screening classification in evidence-based medicine: incorporating domain knowledge into pre-trained models. (2024)
Presentation / Conference Contribution
OFORI-BOATENG, R., ACEVES-MARTINS, M., WIRATUNGA, N. and MORENO-GARCIA, C.F. 2024. Extended results for: enhancing abstract screening classification in evidence-based medicine: incorporating domain knowledge into pre-trained models. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.). Proceedings of the 2024 SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822Aachen: CEUR-WS [online], pages 11-18. Available from: https://ceur-ws.org/Vol-3822/short1.pdf

Evidence-based medicine (EBM) is a foundational element in medical research, playing a crucial role in shaping healthcare policies and clinical decision-making. However, the rigorous processes required for EBM, particularly during the abstract screen... Read More about Extended results for: enhancing abstract screening classification in evidence-based medicine: incorporating domain knowledge into pre-trained models..

Dual-task dialogue understanding. (2024)
Presentation / Conference Contribution
ANWAR, S., WIRATUNGA, N. and SNAITH, M. 2024. Dual-task dialogue understanding. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 40-46. Available from: https://ceur-ws.org/Vol-3822/short5.pdf

In dialogue systems, utterances do not occur in isolation. One conversation might involve interactions between several speakers. It's crucial to determine the intentions behind utterances in multi-party conversations when more than two interlocutors... Read More about Dual-task dialogue understanding..

SCaLe-QA: Sri Lankan case law embeddings for legal QA. (2024)
Presentation / Conference Contribution
JAYAWARDENA, L., WIRATUNGA, N., ABEYRATNE, R., MARTIN, K., NKISI-ORJI, I. and WEERASINGHE, R. 2024. SCaLe-QU: Sri Lankan case law embeddings for legal QA. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 47-55. Available from: https://ceur-ws.org/Vol-3822/short6.pdf

SCaLe-QA is a foundational system developed for Sri Lankan Legal Question Answering (LQA) by leveraging domain-specific embeddings derived from Supreme Court cases. The system is tailored to capture the unique linguistic and structural characteristic... Read More about SCaLe-QA: Sri Lankan case law embeddings for legal QA..

Towards improving open-box hallucination detection in large language models (LLMs). (2024)
Presentation / Conference Contribution
SURESH, M., ALJUNDI, R., NKISI-ORJI, I. and WIRATUNGA, N. 2024. Towards improving open-box hallucination detection in large language models (LLMs). In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 1-10. Available from: https://ceur-ws.org/Vol-3822/paper1.pdf

Due to the increasing availability of Large Language Models (LLMs) through both proprietary and open-sourced releases of models, the adoption of LLMs across applications has drastically increased making them commonplace in day-to-day lives. Yet, the... Read More about Towards improving open-box hallucination detection in large language models (LLMs)..

Integrating KGs and ontologies with RAG for personalised summarisation in regulatory compliance. (2024)
Presentation / Conference Contribution
ARSHAD, U., CORSAR, D. and NKISI-ORJI, I. 2024. Integrating KGs and ontologies with RAG for personalised summarisation in regulatory compliance. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 56-61. Available from: https://ceur-ws.org/Vol-3822/short7.pdf

With the growing complexity and increased volumes, regulatory texts are fast becoming a significant challenge for organisations to remain compliant. Traditional ways of summarising legal texts need to be more accommodating of critical, domain-specifi... Read More about Integrating KGs and ontologies with RAG for personalised summarisation in regulatory compliance..

Formal dialogue and large language models. (2024)
Presentation / Conference Contribution
SNAITH, M. and WELLS, S. 2024. Formal dialogue and large language models. In Martin, K., Salimi, P. and Wijayasekara, V. (eds.) 2024. SICSA REALLM workshop 2024: proceedings of the SICSA (Scottish Informatics and Computer Science Alliance) REALLM (Reasoning, explanation and applications of large language models) workshop (SICSA REALLM workshop 2024), 17 October 2024, Aberdeen, UK. CEUR workshop proceedings, 3822. Aachen: CEUR-WS [online], pages 24-31. Available from: https://ceur-ws.org/Vol-3822/short3.pdf

In this paper, we present preliminary work into combining formal models of dialogue and large language models, before going on to discuss how this provides a foundation for similar approaches involving computational models of argument. First, we addr... Read More about Formal dialogue and large language models..

Building personalised XAI experiences through iSee: a case-based reasoning-driven platform. (2024)
Presentation / Conference Contribution
CARO-MARTÍNEZ, M., LIRET, A., DÍAZ-AGUDO, B., RECIO-GARCÍA, J.A., DARIAS, J., WIRATUNGA, N., WIJEKOON, A., MARTIN, K., NKISI-ORJI, I., CORSAR, D., PALIHAWADANA, C., PIRIE, C., BRIDGE, D., PRADEEP, P. and FLEISCH, B. 2024. Building personalised XAI experiences through iSee: a case-based reasoning-driven platform. In Longo, L., Liu, W. and Montavon, G. (eds.) xAI-2024: LB/D/DC: joint proceedings of the xAI 2024 late-breaking work, demos and doctoral consortium, co-located with the 2nd World conference on eXplainable artificial intelligence (xAI 2024), 17-19 July 2024, Valletta, Malta. Aachen: CEUR-WS [online], 3793, pages 313-320. Available from: https://ceur-ws.org/Vol-3793/paper_40.pdf

Nowadays, eXplainable Artificial Intelligence (XAI) is well-known as an important field in Computer Science due to the necessity of understanding the increasing complexity of Artificial Intelligence (AI) systems or algorithms. This is the reason why... Read More about Building personalised XAI experiences through iSee: a case-based reasoning-driven platform..

CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering. (2024)
Presentation / Conference Contribution
WIRATUNGA, N., ABEYRATNE, R., JAYAWARDENA, L., MARTIN, K., MASSIE, S., NKISI-ORJI, I., WEERASINGHE, R., LIRET, A. and FLEISCH, B. 2024. CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering. In Recio-Garcia, J.A., Orozco-del-Castillo, M.G. and Bridge, D (eds.) Case-based reasoning research and development: proceedings of the 32nd International conference of case-based reasoning research and development 2024 (ICCBR 2024), 1-4 July 2024, Merida, Mexico. Lecture notes in computer science, 14775. Cham: Springer [online], pages 445-460. Available from: https://doi.org/10.1007/978-3-031-63646-2_29

Retrieval-Augmented Generation (RAG) enhances Large Language Model (LLM) output by providing prior knowledge as context to input. This is beneficial for knowledge-intensive and expert reliant tasks, including legal question-answering, which require e... Read More about CBR-RAG: case-based reasoning for retrieval augmented generation in LLMs for legal question answering..

Evaluating a pass/fail grading model in first year undergraduate computing. (2023)
Presentation / Conference Contribution
ZARB, M., MCDERMOTT, R., MARTIN, K., YOUNG, T. and MCGOWAN, J. 2023. Evaluating a pass/fail grading model in first year undergraduate computing. In Proceedings of the 2023 IEEE (Institute of Electrical and Electronics Engineers) Frontiers in education conference (FIE 2023), 18-21 October 2023, College Station, TX, USA. Piscataway: IEEE [online], article 10343276. Available from: https://doi.org/10.1109/FIE58773.2023.10343276

This Innovative Practice Full Paper investigates the implications of implementing a Pass/Fail marking scheme within the undergraduate curriculum, specifically across first year computing modules in a Scottish Higher Education Institution. The motivat... Read More about Evaluating a pass/fail grading model in first year undergraduate computing..

Clinical dialogue transcription error correction with self-supervision. (2023)
Presentation / Conference Contribution
NANAYAKKARA, G., WIRATUNGA, N., CORSAR, D., MARTIN, K. and WIJEKOON, A. 2023. Clinical dialogue transcription error correction with self-supervision. In Bramer, M. and Stahl, F. (eds.) Artificial intelligence XL: proceedings of the 43rd SGAI international conference on artificial intelligence (AI-2023), 12-14 December 2023, Cambridge, UK. Lecture notes in computer science, 14381. Cham: Springer [online], pages 33-46. Available from: https://doi.org/10.1007/978-3-031-47994-6_3

A clinical dialogue is a conversation between a clinician and a patient to share medical information, which is critical in clinical decision-making. The reliance on manual note-taking is highly inefficient and leads to transcription errors when digit... Read More about Clinical dialogue transcription error correction with self-supervision..

CBR driven interactive explainable AI. (2023)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., MARTIN, K., CORSAR, D., NKISI-ORJI, I., PALIHAWADANA, C., BRIDGE, D., PRADEEP, P., AGUDO, B.D. and CARO-MARTÍNEZ, M. 2023. CBR driven interactive explainable AI. In MASSIE, S. and CHAKRABORTI, S. (eds.) 2023. Case-based reasoning research and development: proceedings of the 31st International conference on case-based reasoning 2023, (ICCBR 2023), 17-20 July 2023, Aberdeen, UK. Lecture notes in computer science (LNCS), 14141. Cham: Springer [online], pages169-184. Available from: https://doi.org/10.1007/978-3-031-40177-0_11

Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Numerous explanation techniques (explainers) exist in the literature, and recent findings suggest that addressing multiple user needs requi... Read More about CBR driven interactive explainable AI..

Machine learning for risk stratification of diabetic foot ulcers using biomarkers. (2023)
Presentation / Conference Contribution
MARTIN, K., UPADHYAY, A., WIJEKOON, A., WIRATUNGA, N. and MASSIE, S. 2023. Machine learning for risk stratification of diabetic foot ulcers using biomarkers. In Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational science: proceedings of the 23rd International conference on computational science 2023 (ICCS 2023): computing at the cutting edge of science (ICCS 2023), 3-5 July 2023, Prague, Czech Republic: [virtual event]. Lecture notes in computer science, 14075. Cham: Springer [online], part III, pages 153-161. Available from: https://doi.org/10.1007/978-3-031-36024-4_11

Development of a Diabetic Foot Ulcer (DFU) causes a sharp decline in a patient's health and quality of life. The process of risk stratification is crucial for informing the care that a patient should receive to help manage their Diabetes before an ul... Read More about Machine learning for risk stratification of diabetic foot ulcers using biomarkers..

iSee: intelligent sharing of explanation experiences. (2023)
Presentation / Conference Contribution
MARTIN, K., WIJEKOON, A., WIRATUNGA, N., PALIHAWADANA, C., NKISI-ORJI, I., CORSAR, D., DÍAZ-AGUDO, B., RECIO-GARCÍA, J.A., CARO-MARTÍNEZ, M., BRIDGE, D., PRADEEP, P., LIRET, A. and FLEISCH, B. 2022. iSee: intelligent sharing of explanation experiences. In Reuss, P. and Schönborn, J. (eds.) Workshop proceedings of the 30th International conference on case-based reasoning (ICCBR-WS 2022), 12-15 September 2022, Nancy, France. CEUR workshop proceedings, 3389. Aachen: CEUR-WS [online], pages 231-232. Available from: https://ceur-ws.org/Vol-3389/ICCBR_2022_Workshop_paper_83.pdf

The right to an explanation of the decision reached by a machine learning (ML) model is now an EU regulation. However, different system stakeholders may have different background knowledge, competencies and goals, thus requiring different kinds of ex... Read More about iSee: intelligent sharing of explanation experiences..

iSee: intelligent sharing of explanation experience of users for users. (2023)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., PALIHAWADANA, C., NKISI-ORJI, I., CORSAR, D. and MARTIN, K. 2023. iSee: intelligent sharing of explanation experience of users for users. In IUI '23 companion: companion proceedings of the 28th Intelligent user interfaces international conference 2023 (IUI 2023), 27-31 March 2023, Sydney, Australia. New York: ACM [online], pages 79-82. Available from: https://doi.org/10.1145/3581754.3584137

The right to obtain an explanation of the decision reached by an Artificial Intelligence (AI) model is now an EU regulation. Different stakeholders of an AI system (e.g. managers, developers, auditors, etc.) may have different background knowledge, c... Read More about iSee: intelligent sharing of explanation experience of users for users..

Empowering inquiry-based learning in short courses for professional students. (2023)
Presentation / Conference Contribution
MARTIN, K., ZARB, M., MCDERMOTT, R. and YOUNG, T. 2023. Empowering inquiry-based learning in short courses for professional students. In Chova, L.G., Martínez, C.G. and Lees, J. (eds.) Proceedings of the 17th International technology, education and development conference 2023 (INTED 2023), 6-8 March 2023, Valencia, Spain. Valencia: IATED [online], pages 5404-5409. Available from: https://doi.org/10.21125/inted.2023.1407

This paper presents the pedagogic underpinning for the development of an online postgraduate short course educating participants on multi-modal data science, specifically within the context of the digital health industry. The growing digital health s... Read More about Empowering inquiry-based learning in short courses for professional students..

Clinical dialogue transcription error correction using Seq2Seq models. (2022)
Presentation / Conference Contribution
NANAYAKKARA, G., WIRATURNGA, N., CORSAR, D., MARTIN, K. and WIJEKOON, A. 2022. Clinical dialogue transcription error correction using Seq2Seq models. In Shaban-Nejad, A., Michalowski, M. and Bianco, S. (eds.) Multimodal AI in healthcare: a paradigm shift in health intelligence; selected papers from the 6th International workshop on health intelligence (W3PHIAI-22), co-located with the 34th AAAI (Association for the Advancement of Artificial Intelligence) Innovative applications of artificial intelligence (IAAI-22), 28 February - 1 March 2022, [virtual event]. Studies in computational intelligence, 1060. Cham: Springer [online], pages 41-57. Available from: https://doi.org/10.1007/978-3-031-14771-5_4

Good communication is critical to good healthcare. Clinical dialogue is a conversation between health practitioners and their patients, with the explicit goal of obtaining and sharing medical information. This information contributes to medical decis... Read More about Clinical dialogue transcription error correction using Seq2Seq models..

Escaping traditional outreach: digital escape rooms to engage potential students. (2022)
Presentation / Conference Contribution
MARTIN, K., WRIGHT, R. and ZARB, M. 2022. Escaping traditional outreach: digital escape rooms to engage potential students. Presented at the 2022 RGU annual learning and teaching conference (RGU LTC 2022): enhancing for impact, 21 October 2022, Aberdeen, UK.

Outreach has been linked to many advantages, including improving access for typically disadvantaged students and raising their completion rates. The "Access To" programme is an outreach initiative for under-represented groups in secondary education.... Read More about Escaping traditional outreach: digital escape rooms to engage potential students..

How close is too close? Role of feature attributions in discovering counterfactual explanations. (2022)
Presentation / Conference Contribution
WIJEKOON, A., WIRATUNGA, N., NKISI-ORJI, I., PALIHAWADANA, C., CORSAR, D. and MARTIN, K. 2022. How close is too close? Role of feature attributions in discovering counterfactual explanations. In Keane, M.T. and Wiratunga, N. (eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer [online], pages 33-47. Available from: https://doi.org/10.1007/978-3-031-14923-8_3

Counterfactual explanations describe how an outcome can be changed to a more desirable one. In XAI, counterfactuals are "actionable" explanations that help users to understand how model decisions can be changed by adapting features of an input. A cas... Read More about How close is too close? Role of feature attributions in discovering counterfactual explanations..

DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. (2021)
Presentation / Conference Contribution
WIRATUNGA, N., WIJEKOON, A., NKISI-ORJI, I., MARTIN, K., PALIHAWADANA, C. and CORSAR, D. 2021. DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods. In Proceedings of 33rd IEEE (Institute of Electrical and Electronics Engineers) International conference on tools with artificial intelligence 2021 (ICTAI 2021), 1-3 November 2021, Washington, USA [virtual conference]. Piscataway: IEEE [online], pages 1466-1473. Available from: https://doi.org/10.1109/ICTAI52525.2021.00233

Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a machine learning outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to discover input dependencies tha... Read More about DisCERN: discovering counterfactual explanations using relevance features from neighbourhoods..