Skip to main content

Research Repository

Advanced Search

Doctor Eyad Elyan


CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. (2020)
Journal Article
ELYAN, E., MORENO-GARCIA, C.F. and JAYNE, C. 2020. CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification. Neural computing and applications [online], Online First. Available from: https://doi.org/10.1007/s00521-020-05130-z

Class-imbalanced datasets are common across several domains such as health, banking, security, and others. The dominance of majority class instances (negative class) often results in biased learning models, and therefore, classifying such datasets re... Read More about CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification..

Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease. (2020)
Journal Article
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease. International journal of neural systems [online], 30(8), article ID 2050043. Available from: https://doi.org/10.1142/S0129065720500434

Classification of imbalanced datasets has attracted substantial research interest over the past decades. Imbalanced datasets are common in several domains such as health, finance, security and others. A wide range of solutions to handle imbalanced da... Read More about Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson's disease..

Deep learning for symbols detection and classification in engineering drawings. (2020)
Journal Article
ELYAN, E., JAMIESON, L. and ALI-GOMBE, A. 2020. Deep learning for symbols detection and classification in engineering drawings. Neural networks [online], 129, pages 91-102. Available from: https://doi.org/10.1016/j.neunet.2020.05.025

Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly due to the need to improve business practic... Read More about Deep learning for symbols detection and classification in engineering drawings..

Overlap-based undersampling method for classification of imbalanced medical datasets. (2020)
Conference Proceeding
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Overlap-based undersampling method for classification of imbalanced medical datasets. In Maglogiannis, I., Iliadis, L. and Pimenidis, E. (eds.) Artificial intelligence applications and innovations: AIAI 2020; proceedings of 16th International Federation for Information Processing working group (IFIP WG) 12.5 International artificial intelligence applications and innovations, 5-7 June 2020, Halkidiki, Greece. IFIP advances in information and communication technology, 584. Cham: Springer [online], pages 358-369. Available from: https://doi.org/10.1007/978-3-030-49186-4_30

Early diagnosis of some life-threatening diseases such as cancers and heart is crucial for effective treatments. Supervised machine learning has proved to be a very useful tool to serve this purpose. Historical data of patients including clinical and... Read More about Overlap-based undersampling method for classification of imbalanced medical datasets..

Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. (2020)
Conference Proceeding
ELYAN, E., MORENO-GARC√ćA, C.F. and JOHNSTON, P. 2020. Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 215-224. Available from: https://doi.org/10.1007/978-3-030-48791-1_16

Engineering drawings are common across different domains such as Oil & Gas, construction, mechanical and other domains. Automatic processing and analysis of these drawings is a challenging task. This is partly due to the complexity of these documents... Read More about Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks..

Predicting permeability based on core analysis. (2020)
Conference Proceeding
KONTOPOULOS, H., AHRIZ, H., ELYAN, E. and ARNOLD, R. 2020. Predicting permeability based on core analysis. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 143-154. Available from: https://doi.org/10.1007/978-3-030-48791-1_10

Knowledge of permeability, a measure of the ability of rocks to allow fluids to flow through them, is essential for building accurate models of oil and gas reservoirs. Permeability is best measured in the laboratory using special core analysis (SCAL)... Read More about Predicting permeability based on core analysis..

Towards a reliable face recognition system. (2020)
Conference Proceeding
ALI-GOMBE, A., ELYAN, E. and ZWIEGELAAR, J. 2020. Towards a reliable face recognition system. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 304-316. Available from: https://doi.org/10.1007/978-3-030-48791-1_23

Face Recognition (FR) is an important area in computer vision with many applications such as security and automated border controls. The recent advancements in this domain have pushed the performance of models to human-level accuracy. However, the va... Read More about Towards a reliable face recognition system..

Augmented reality procedural guide system. (2020)
Digital Artefact
ELYAN, E. 2020. Augmented reality procedural guide system. [Video recording]. Aberdeen: Robert Gordon University [online]. Available from: https://youtu.be/SM15leaKbJY

This video provides a brief demonstration of an augmented reality (AR) system for the provision of guidance on correct procedures during the handling of complex equipment. This system was created as part of a project that aimed to replace user guides... Read More about Augmented reality procedural guide system..

Learning from small and imbalanced dataset of images using generative adversarial neural networks. (2019)
Thesis
ALI-GOMBE, A. 2019. Learning from small and imbalanced dataset of images using generative adversarial neural networks. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk

The performance of deep learning models is unmatched by any other approach in supervised computer vision tasks such as image classification. However, training these models requires a lot of labeled data, which are not always available. Labelling a ma... Read More about Learning from small and imbalanced dataset of images using generative adversarial neural networks..

The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. (2019)
Journal Article
STEPHENS HEMINGWAY, B.H., BURGESS, K.E., ELYAN, E. and SWINTON, P.A. 2020. The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach. International journal of sports science and coaching [online], 15(1), pages 60-71. Available from: https://doi.org/10.1177/1747954119887721

This study investigated the effects of measurement error and testing frequency on prediction accuracy of the standard Fitness-Fatigue Model. A simulation-based approach was used to systematically assess measurement error and frequency inputs commonly... Read More about The effects of measurement error and testing frequency on the fitness-fatigue model applied to resistance training: a simulation approach..

;