Skip to main content

Research Repository

Advanced Search

Professor Eyad Elyan's Outputs (37)

A novel ensemble aggregation method based on deep learning representation. (2024)
Presentation / Conference Contribution
NGUYEN, T.T., ELYAN, E., DANG, T., NGUYEN, T.T. and LONGMUIR, M. 2025. A novel ensemble aggregation method based on deep learning representation. In Antonacopoulos, A., Chaudhuri, S., Chellappa, R., et al. (eds.) Pattern recognition: proceedings of the 27th International conference on pattern recognition, 1-5 December 2024, Kolkata, India. Lecture notes in computer science, 15324. Cham: Springer [online], pages 31-46. Available from: https://doi.org/10.1007/978-3-031-78383-8_3

We propose a novel ensemble aggregation method by using a deep learning-based representation approach. Specifically, we applied the Cross-Validation procedure on training data with a number of learning algorithms to obtain the predictions for trainin... Read More about A novel ensemble aggregation method based on deep learning representation..

A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams. (2024)
Presentation / Conference Contribution
JAMIESON, L., MORENO-GARCÍA, C.F. and ELYAN, E. 2024. A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams. In Barney Smith, E.H., Liwicki, M. and Peng, L. (eds.) Proceedings of the 18th International conference on Document analysis and recognition 2024 (ICDAR 2024), 30 August - 4 September 2024, Athens, Greece. Lecture notes in computer science, 14804. Cham: Springer [online], part 1, pages 3-16. Available from: https://doi.org/10.1007/978-3-031-70533-5_1

Engineering diagrams provide rich source of information and are widely used across different industries. Recent years have seen growing research interest in developing solutions for processing and analysing these diagrams using wide range of image-pr... Read More about A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams..

Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies. (2024)
Presentation / Conference Contribution
HASAN, M.J., ELYAN, E., YAN, Y., REN, J. and SARKER, M.M.K. 2024. Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies. In Ren, J., Hussain, A., Liao, I.Y. et al. (eds.) Advances in brain inspired cognitive systems: proceedings of the 13th International conference on Brain-inspired cognitive systems 2023 (BICS 2023), 5-6 August 2023, Kuala Lumpur, Malaysia. Lecture notes in computer sciences, 14374. Cham: Springer [online], pages 220-228. Available from: https://doi.org/10.1007/978-981-97-1417-9_21

Retrofitting and thermographic survey (TS) companies in Scotland collaborate with social housing providers to tackle fuel poverty. They employ ground-level infrared (IR) camera-based-TSs (GIRTSs) for collecting thermal images to identify the heat los... Read More about Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies..

Object-aware multi-criteria decision-making approach using the heuristic data-driven theory for intelligent transportation systems. (2023)
Presentation / Conference Contribution
MEKALA, M.S., EYAD, E. and SRIVASTAVA, G. 2023. Object-aware multi-criteria decision-making approach using the heuristic data-driven theory for intelligent transportation systems. In Proceedings of the 10th IEEE (Institute of Electrical and Electronics Engineers) Data science and advanced analytics international conference 2023 (DSAA 2023), 9-13 October 2023, Thessaloniki, Greece. Piscataway: IEEE [online], 10302554. Available from: https://doi.org/10.1109/DSAA60987.2023.10302554

Sharing up-to-date information about the surrounding measured by On-Board Units (OBUs) and Roadside Units (RSUs) is crucial in accomplishing traffic efficiency and pedestrians safety towards Intelligent Transportation Systems (ITS). Transferring meas... Read More about Object-aware multi-criteria decision-making approach using the heuristic data-driven theory for intelligent transportation systems..

Unmasking the imposters: task-specific feature learning for face presentation attack detection. (2023)
Presentation / Conference Contribution
ABDULLAKUTTY, F., ELYAN, E. and JOHNSTON, P. 2023. Unmasking the imposters: task-specific feature learning for face presentation attack detection. In Proceedings of the 2023 International joint conference on neural networks (IJCNN2023), 18-23 June 2023, Gold Coast, Australia. Piscataway: IEEE [online], 10191953. Available from: https://doi.org/10.1109/IJCNN54540.2023.10191953

Presentation attacks pose a threat to the reliability of face recognition systems. A photograph, a video, or a mask representing an authorised user can be used to circumvent the face recognition system. Recent research has demonstrated high accuracy... Read More about Unmasking the imposters: task-specific feature learning for face presentation attack detection..

Digital transformation for offshore assets: a deep learning framework for weld classification in remote visual inspections. (2023)
Presentation / Conference Contribution
TORAL-QUIJAS, L.A., ELYAN, E., MORENO-GARCÍA, C.F. and STANDER, J. 2023. Digital transformation for offshore assets: a deep learning framework for weld classification in remote visual inspections. In Iliadis, L, Maglogiannis, I., Alonso, S., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 24th International conference on engineering applications of neural networks (EAAAI/EANN 2023), 14-17 June 2023, León, Spain. Communications in computer and information science, 1826. Cham: Springer [online], pages 217-226. Available from: https://doi.org/10.1007/978-3-031-34204-2_19

Inspecting circumferential welds in caissons is a critical task for ensuring the safety and reliability of structures in the offshore industry. However, identifying and classifying different types of circumferential welds can be challenging in subsea... Read More about Digital transformation for offshore assets: a deep learning framework for weld classification in remote visual inspections..

On the UK smart metering system and value of data for distribution system operators. (2023)
Presentation / Conference Contribution
NUMAIR, M., ABOUSHADY, A.A., FARRAG, M.E. and ELYAN, E. 2023. On the UK smart metering system and value of data for distribution system operators. In Proceedings of the 19th International conference on AC and DC power transmission 2023 (ACDC 2023), 1-3 March 2023, Glasgow, UK. IET conference proceedings, 2023(1). Stevenage: IET [online], pages 174-180. Available from: https://doi.org/10.1049/icp.2023.1326

The Smart Metering Implementation Programme (SMIP) is an ongoing energy infrastructure upgrade that is delivering 53 million smart electricity and gas meters for homes and small businesses in the UK. The programme is expected to deliver economic bene... Read More about On the UK smart metering system and value of data for distribution system operators..

Cross domain evaluation of text detection models. (2022)
Presentation / Conference Contribution
ALI-GOMBE, A., ELYAN, E., MORENO-GARCÍA, C. and JAYNE, C. 2022. Cross domain evaluation of text detection models. In Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A. and Aydin, M. (eds.) Artificial neural networks and machine learning - ICANN 2022: proceedings of the 31st International conference on artificial neural networks (ICANN 2022), 6-9 September 2022, Bristol, UK, part III. Lecture notes in computer science, 13531. Cham: Springer [online], pages 50-61. Available from: https://doi.org/10.1007/978-3-031-15934-3_5

Text detection is a very common task across a wide range of domains, such as document image analysis, remote identity verification, amongst others. It is also considered an integral component of any text recognition system, where the performance of r... Read More about Cross domain evaluation of text detection models..

TransSLC: skin lesion classification in dermatoscopic images using transformers. (2022)
Presentation / Conference Contribution
SARKER, M.M.K., MORENO-GARCÍA, C.F., REN, J. and ELYAN, E. 2022. TransSLC: skin lesion classification in dermatoscopic images using transformers. In Yang, G., Aviles-Rivero, A., Roberts, M. and Schönlieb, C.-B. (eds.) Medical image understanding and analysis: proceedings of 26th Medical image understanding and analysis 2022 (MIUA 2022), 27-29 July 2022, Cambridge, UK. Lecture notes in computer sciences, 13413. Cham: Springer [online], pages 651-660. Available from: https://doi.org/10.1007/978-3-031-12053-4_48

Early diagnosis and treatment of skin cancer can reduce patients' fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and rec... Read More about TransSLC: skin lesion classification in dermatoscopic images using transformers..

Towards machine learning-driven practices for oil and gas decommissioning: introduction of a new offshore pipeline dataset. (2021)
Presentation / Conference Contribution
VUTTIPITTAYAMONGKOL, P., TUNG, A. and ELYAN, E. 2021. Towards machine learning-driven practices for oil and gas decommissioning: introduction of a new offshore pipeline dataset. In Proceedings of the 9th International conference on computer and communications management (ICCCM 2021), 16-18 July 2021, [virtual event]. New York: ACM [online], pages 111-116. Available from: https://doi.org/10.1145/3479162.3479179

Thousands of offshore oil and gas structures worldwide are approaching the end of their operating lifespan. Decommissioning processes are expensive and normally take years to finish as various options need to be analysed based on numerous stakeholder... Read More about Towards machine learning-driven practices for oil and gas decommissioning: introduction of a new offshore pipeline dataset..

A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. (2021)
Presentation / Conference Contribution
TORAL, L., MORENO-GARCIA, C.F., ELYAN, E. and MEMON, S. 2021. A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams. In Barney Smith, E.H. and Pal, U. (eds.) Document analysis and recognition: ICDAR 2021 workshops, part II: proceedings of 16th International conference on document analysis and recognition 2021 (ICDAR 2021), 5-10 September 2021, Lausanne, Switzerland. Lecture notes in computer science, 12917. Cham: Springer [online], pages 268-276. Available from: https://doi.org/10.1007/978-3-030-86159-9_18

Corrosion circuit mark up in engineering drawings is one of the most crucial tasks performed by engineers. This process is currently done manually, which can result in errors and misinterpretations depending on the person assigned for the task. In th... Read More about A deep learning digitisation framework to mark up corrosion circuits in piping and instrumentation diagrams..

Class-decomposition and augmentation for imbalanced data sentiment analysis. (2021)
Presentation / Conference Contribution
MORENO-GARCIA, C.F., JAYNE, C. and ELYAN, E. 2021. Class-decomposition and augmentation for imbalanced data sentiment analysis. In Proceedings of 2021 International joint conference on neural networks (IJCNN 2021), 18-22 July 2021, [virtual conference]. Piscataway: IEEE [online], article 9533603. Available from: https://doi.org/10.1109/IJCNN52387.2021.9533603

Significant progress has been made in the area of text classification and natural language processing. However, like many other datasets from across different domains, text-based datasets may suffer from class-imbalance. This problem leads to model's... Read More about Class-decomposition and augmentation for imbalanced data sentiment analysis..

Face detection with YOLO on edge. (2021)
Presentation / Conference Contribution
ALI-GOMBE, A., ELYAN, E., MORENO-GARCIA, C.F. and ZWIEGELAAR, J. 2021. Face detection with YOLO on edge. In Iliadis, L., Macintyre, J., Jayne, C. and Pimenidis, E. (eds.). Proceedings of the 22nd Enginering applications of neural networks conference (EANN2021), 25-27 June 2021, Halkidiki, Greece. Proceedings of the International Neural Networks Society (INNS), 3. Cham: Springer [online], pages 284-292. Available from: https://doi.org/10.1007/978-3-030-80568-5_24

Significant progress has been achieved in objects detection applications such as Face Detection. This mainly due to the latest development in deep learning-based approaches and especially in the computer vision domain. However, deploying deep-learnin... Read More about Face detection with YOLO on edge..

Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. (2021)
Presentation / Conference Contribution
DANG, T., NGUYEN, T.T., MORENO-GARCIA, C.F., ELYAN, E. and MCCALL, J. 2021. Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation. In Proceeding of 2021 IEEE (Institute of electrical and electronics engineers) Congress on evolutionary computation (CEC 2021), 28 June - 1 July 2021, Kraków, Poland : [virtual conference]. Piscataway: IEEE [online], pages 744-751. Available from: https://doi.org/10.1109/CEC45853.2021.9504929

In recent years, deep learning has rapidly become a method of choice for segmentation of medical images. Deep neural architectures such as UNet and FPN have achieved high performances on many medical datasets. However, medical image analysis algorith... Read More about Weighted ensemble of deep learning models based on comprehensive learning particle swarm optimization for medical image segmentation..

Deep learning for text detection and recognition in complex engineering diagrams. (2020)
Presentation / Conference Contribution
JAMIESON, L, MORENO-GARCIA, C.F. and ELYAN, E. 2020. Deep learning for text detection and recognition in complex engineering diagrams. In Proceedings of the 2020 Institute of Electrical and Electronics Engineers (IEEE) International joint conference on neural networks (IEEE IJCNN 2020), part of the 2020 IEEE World congress on computational intelligence (IEEE WCCI 2020) and co-located with the 2020 IEEE congress on evolutionary computation (IEEE CEC 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020, [virtual conference]. Piscataway: IEEE [online], article ID 9207127. Available from: https://doi.org/10.1109/IJCNN48605.2020.9207127

Engineering drawings such as Piping and Instrumentation Diagrams contain a vast amount of text data which is essential to identify shapes, pipeline activities, tags, amongst others. These diagrams are often stored in undigitised format, such as paper... Read More about Deep learning for text detection and recognition in complex engineering diagrams..

Overlap-based undersampling method for classification of imbalanced medical datasets. (2020)
Presentation / Conference Contribution
VUTTIPITTAYAMONGKOL, P. and ELYAN, E. 2020. Overlap-based undersampling method for classification of imbalanced medical datasets. In Maglogiannis, I., Iliadis, L. and Pimenidis, E. (eds.) Artificial intelligence applications and innovations: AIAI 2020; proceedings of 16th International Federation for Information Processing working group (IFIP WG) 12.5 International artificial intelligence applications and innovations, 5-7 June 2020, Halkidiki, Greece. IFIP advances in information and communication technology, 584. Cham: Springer [online], pages 358-369. Available from: https://doi.org/10.1007/978-3-030-49186-4_30

Early diagnosis of some life-threatening diseases such as cancers and heart is crucial for effective treatments. Supervised machine learning has proved to be a very useful tool to serve this purpose. Historical data of patients including clinical and... Read More about Overlap-based undersampling method for classification of imbalanced medical datasets..

Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. (2020)
Presentation / Conference Contribution
ELYAN, E., MORENO-GARCÍA, C.F. and JOHNSTON, P. 2020. Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 215-224. Available from: https://doi.org/10.1007/978-3-030-48791-1_16

Engineering drawings are common across different domains such as Oil & Gas, construction, mechanical and other domains. Automatic processing and analysis of these drawings is a challenging task. This is partly due to the complexity of these documents... Read More about Symbols in engineering drawings (SiED): an imbalanced dataset benchmarked by convolutional neural networks..

Predicting permeability based on core analysis. (2020)
Presentation / Conference Contribution
KONTOPOULOS, H., AHRIZ, H., ELYAN, E. and ARNOLD, R. 2020. Predicting permeability based on core analysis. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, vol 2. Cham: Springer [online], pages 143-154. Available from: https://doi.org/10.1007/978-3-030-48791-1_10

Knowledge of permeability, a measure of the ability of rocks to allow fluids to flow through them, is essential for building accurate models of oil and gas reservoirs. Permeability is best measured in the laboratory using special core analysis (SCAL)... Read More about Predicting permeability based on core analysis..

Towards a reliable face recognition system. (2020)
Presentation / Conference Contribution
ALI-GOMBE, A., ELYAN, E. and ZWIEGELAAR, J. 2020. Towards a reliable face recognition system. In Iliadis, L., Angelov, P.P., Jayne, C. and Pimenidis, E. (eds.) Proceedings of the 21st Engineering applications of neural networks conference 2020 (EANN 2020); proceedings of the EANN 2020, 5-7 June 2020, Halkidiki, Greece. Proceedings of the International Neural Networks Society, 2. Cham: Springer [online], pages 304-316. Available from: https://doi.org/10.1007/978-3-030-48791-1_23

Face Recognition (FR) is an important area in computer vision with many applications such as security and automated border controls. The recent advancements in this domain have pushed the performance of models to human-level accuracy. However, the va... Read More about Towards a reliable face recognition system..

Multiple fake classes GAN for data augmentation in face image dataset. (2019)
Presentation / Conference Contribution
ALI-GOMBE, A., ELYAN, E. and JAYNE, C. 2019. Multiple fake classes GAN for data augmentation in face image dataset. In Proceedings of the 2019 International joint conference on neural networks (IJCNN 2019), 14-19 July 2019, Budapest, Hungary. Piscataway: IEEE [online], article ID 8851953. Available from: https://doi.org/10.1109/IJCNN.2019.8851953

Class-imbalanced datasets often contain one or more class that are under-represented in a dataset. In such a situation, learning algorithms are often biased toward the majority class instances. Therefore, some modification to the learning algorithm o... Read More about Multiple fake classes GAN for data augmentation in face image dataset..