Professor Eyad Elyan e.elyan@rgu.ac.uk
Professor
Professor Eyad Elyan e.elyan@rgu.ac.uk
Professor
Dr Carlos Moreno-Garcia c.moreno-garcia@rgu.ac.uk
Associate Professor
A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams. (2024)
Presentation / Conference Contribution
JAMIESON, L., MORENO-GARCÍA, C.F. and ELYAN, E. 2024. A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams. In Barney Smith, E.H., Liwicki, M. and Peng, L. (eds.) Proceedings of the 18th International conference on Document analysis and recognition 2024 (ICDAR 2024), 30 August - 4 September 2024, Athens, Greece. Lecture notes in computer science, 14804. Cham: Springer [online], part 1, pages 3-16. Available from: https://doi.org/10.1007/978-3-031-70533-5_1Engineering diagrams provide rich source of information and are widely used across different industries. Recent years have seen growing research interest in developing solutions for processing and analysing these diagrams using wide range of image-pr... Read More about A multiclass imbalanced dataset classification of symbols from piping and instrumentation diagrams..
Digital interpretation of sensor-equipment diagrams. (2018)
Presentation / Conference Contribution
MORENO-GARCÍA, C.F. 2018. Digital interpretation of sensor-equipment diagrams. In Martin, K., Wiratunga, N. and Smith, L.S. (eds.) Proceedings of the 2018 Scottish Informatics and Computer Science Alliance (SCISA) workshop on reasoning, learning and explainability (ReaLX 2018), 27 June 2018, Aberdeen, UK. CEUR workshop proceedings, 2151. Aachen: CEUR-WS [online], session 2, paper 1. Available from: http://ceur-ws.org/Vol-2151/Paper_s2.pdfA sensor-equipment diagram is a type of engineering drawing used in the industrial practice that depicts the interconnectivity between a group of sensors and a portion of an Oil & Gas facility. The interpretation of these documents is not a straightf... Read More about Digital interpretation of sensor-equipment diagrams..
Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings. (2017)
Presentation / Conference Contribution
MORENO-GARCÍA, C.F., ELYAN, E. and JAYNE, C. 2017. Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings. In Boracchi, G., Iliadis, L., Jayne, C. and Likas, A. (eds.) Engineering applications of neural networks: proceedings of the 18th International engineering applications of neural networks (EANN 2017), 25-27 August 2017, Athens, Greece. Communications in computer and information science, 744. Cham: Springer [online], pages 87-98. Available from: https://doi.org/10.1007/978-3-319-65172-9_8The demand for digitisation of complex engineering drawings becomes increasingly important for the industry given the pressure to improve the efficiency and time effectiveness of operational processes. There have been numerous attempts to solve this... Read More about Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings..
About OpenAIR@RGU
Administrator e-mail: publications@rgu.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search